1
|
Xu S, Li Q, Li Y, Zhang Y, Li Q, Ji L, Cheng H. Synergistic effect of transporter and pathway engineering on the key performance indicators of erythritol synthesis by the yeast Yarrowia lipolytica. Appl Environ Microbiol 2025; 91:e0006125. [PMID: 40135906 PMCID: PMC12016529 DOI: 10.1128/aem.00061-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 02/28/2025] [Indexed: 03/27/2025] Open
Abstract
Erythritol, a food additive, is produced on an industrial scale using the yeast Yarrowia lipolytica. Nevertheless, the key performance indicators (KPIs) have been found to be unsatisfactory, resulting in elevated erythritol production cost. This study demonstrated that the KPIs (titer, productivity, and yield) of erythritol can be improved by the synergistic application of transporter and pathway engineering strategies in the producing strain. The engineered Y. lipolytica strain Ylxs48 exhibits a glucose consumption rate of 310 g/L of glucose within 46 h during batch culture in 3, 100, and 200 L bioreactors as compared to above 72 h for the parental strain Ylxs01. The erythritol yield achieved ranges from 0.69 to 0.74 g/g depending on the culture conditions as compared to 0.55-0.57 g/g for the parental strain Ylxs01. The productivity surpasses 4.60 g/(L·h), representing a 1.91-fold improvement over the parental strain Ylxs01 in 3, 100, or 200 L bioreactors. Under fed-batch conditions in a 200 L bioreactor, an erythritol titer of 355.81 g/L was achieved, marking the highest titer ever reported. This increased erythritol titer enabled crystallization at 4°C directly from the clear supernatant, eliminating the requirement for evaporation or concentration steps. A comprehensive techno-economic analysis of the entire process conclusively demonstrated that implementing the industrial process based on the engineered strain Ylxs48 led to a significant 23% reduction in production cost. This approach holds the potential to substantially reduce erythritol costs and provides novel insights for engineering other industrial strains. IMPORTANCE The expansion of the erythritol market attracted excessive capital injection, resulting in overcapacity, operational difficulties, and even bankruptcy of erythritol manufacturers. Technology upgrades in the industry are imminent. However, the production technology of existing enterprises is seriously homogenized, and there is a lack of competitive core-producing strains. In this study, the industrial erythritol-producing strain Y. lipolytica CGMCC7326 was genetically modified by integrating substrate transport and pathway modification, which improved the conversion of glucose and significantly improved KPIs, thereby reducing the erythritol production cost.
Collapse
Affiliation(s)
- Shuo Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Li
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ye Li
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Li
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Liyun Ji
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Zhang Y, Liu H, Liu M, Qi Q. Investigation of mannitol as a potential substrate for production of 2'-fucosyllactose in Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2025; 430:132583. [PMID: 40280344 DOI: 10.1016/j.biortech.2025.132583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 04/07/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Mannitol, boasting abundant availability in marine biomass resource, represents a promising feedstock for biomanufacturing. Herein, Yarrowia lipolytica was found to synthesize 2'-fucosyllactose (2'-FL) more efficiently when using mannitol and lactose as substrate, compared to glucose and lactose. Notably, the strain maintained robust growth and 2'-FL production even when cultivated in brown algae processing wastewater. Transcriptome analysis of Y. lipolytica grown on mannitol revealed that two endogenous hexose transporters (Yht1 and Yht3) potentially modulated mannitol uptake. By optimizing the mannitol transporter and the GDP-d-mannose synthesis pathway, a 2'-FL producing strain was constructed with a titer of 9 g/L. Fed-batch fermentation in an inorganic salt medium supplemented with mannitol and lactose elevated the 2'-FL titer to 27.6 g/L. Collectively, this study demonstrates the efficacy of mannitol for 2'-FL biosynthesis and advances the sustainable utilization of algal resources.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Haiyan Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Mengmeng Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
3
|
Rafieenia R, Klemm C, Hapeta P, Fu J, García MG, Ledesma-Amaro R. Designing synthetic microbial communities with the capacity to upcycle fermentation byproducts to increase production yields. Trends Biotechnol 2025; 43:601-619. [PMID: 39603879 DOI: 10.1016/j.tibtech.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/20/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
Microbial cell factories, which convert feedstocks into a product of value, have the potential to help transition toward a bio-based economy with more sustainable ways to produce food, fuels, chemicals, and materials. One common challenge found in most bioconversions is the co-production, together with the product of interest, of undesirable byproducts or overflow metabolites. Here, we designed a strategy based on synthetic microbial communities to address this issue and increase overall production yields. To achieve our goal, we created a Yarrowia lipolytica co-culture comprising a wild-type (WT) strain that consumes glucose to make biomass and citric acid (CA), and an 'upcycler' strain, which consumes the CA produced by the WT strain. The co-culture produced up to two times more β-carotene compared with the WT monoculture using either minimal medium or hydrolysate. The proposed strategy has the potential to be applied to other bioprocesses and organisms.
Collapse
Affiliation(s)
- Razieh Rafieenia
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK; Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK; The Microbial Food Hub, Imperial College London, London, SW7 2AZ, UK; Bezos Centre for Sustainable Protein, Imperial College, London, SW7 2AZ, UK
| | - Cinzia Klemm
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK; Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK; The Microbial Food Hub, Imperial College London, London, SW7 2AZ, UK; Bezos Centre for Sustainable Protein, Imperial College, London, SW7 2AZ, UK
| | - Piotr Hapeta
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK; Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK; London Biofoundry, Translation and Innovation Hub, Imperial College White City Campus, London, UK
| | - Jing Fu
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK; Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK; The Microbial Food Hub, Imperial College London, London, SW7 2AZ, UK; Bezos Centre for Sustainable Protein, Imperial College, London, SW7 2AZ, UK
| | - María Gallego García
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK; Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK; Advanced Biofuels and Bioproducts Unit, Department of Energy, CIEMAT, Avenue Complutense 40, 28040 Madrid, Spain; Alcalá de Henares University, Alcalá de Henares, Spain
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK; Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK; The Microbial Food Hub, Imperial College London, London, SW7 2AZ, UK; Bezos Centre for Sustainable Protein, Imperial College, London, SW7 2AZ, UK.
| |
Collapse
|
4
|
Buarque FS, Ribeiro BD, Freire MG, Coelho MAZ, Pereira MM. Assessing the role of deep eutectic solvents in Yarrowia lipolytica inhibition. J Biotechnol 2025; 398:1-10. [PMID: 39615790 DOI: 10.1016/j.jbiotec.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/14/2024] [Accepted: 11/25/2024] [Indexed: 01/27/2025]
Abstract
Yarrowia lipolytica has gained recognition as a microorganism with biological relevance and extensive biotechnological applications. Some of its features include a high enzyme secretion capacity and a high cell-density fermentation mode. Hexokinase (YlHxk) is a vital enzyme in Y. lipolytica growth since it catalyzes glucose metabolism through phosphorylation in the glycolytic pathway. Given the potential application of deep eutectic solvents (DES) as novel solvents in biotechnological processes, this study evaluated the influence of eighteen DES on the growth of Y. lipolytica. Furthermore, this work examined the effects of individual ions on the YlHxk enzyme by analyzing its enzymatic tunnel structure, molecule transport, and molecular docking. The results revealed a significant reduction in yeast growth in the presence of most DES compared to the control (medium without DES), with the exception of the [N8881]Cl: hexanoic acid (1:1) DES. The growth varied between 11.95 ± 0.60 and 0.68 ± 0.17 g dry cell weight L-1. According to the enzymatic tunnel analysis, DES components associated with the lowest microbial growth values were transported through tunnel 1. On the other hand, DES components had their pathway facilitated through tunnel 2 ([N8881]+ and hexanoic acid) and showed growth values close to the control. Molecular docking analysis identified a similarity between all the ligands in this tunnel (including substrate and product), presenting binding interactions with the ASN273 amino acid of the YlHxk active site. Combining experimental results with computational tools provided promising insights at the molecular level, while also potentially reducing analysis costs and time, paving the way for similar approaches in broad biocatalytic reactions.
Collapse
Affiliation(s)
- Filipe S Buarque
- Biochemical Engineering Department, School of Chemistry, Federal University of Rio de Janeiro, Brazil; CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Portugal.
| | - Bernardo D Ribeiro
- Biochemical Engineering Department, School of Chemistry, Federal University of Rio de Janeiro, Brazil
| | - Mara G Freire
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Portugal
| | - Maria A Z Coelho
- Biochemical Engineering Department, School of Chemistry, Federal University of Rio de Janeiro, Brazil
| | - Matheus M Pereira
- University of Coimbra, CERES, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, Coimbra 3030-790, Portugal.
| |
Collapse
|
5
|
Li M, Ni Z, Li Z, Yin Y, Liu J, Wu D, Sun Z, Wang L. Research progress on biosynthesis of erythritol and multi-dimensional optimization of production strategies. World J Microbiol Biotechnol 2024; 40:240. [PMID: 38867081 DOI: 10.1007/s11274-024-04043-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
Erythritol, as a new type of natural sweetener, has been widely used in food, medical, cosmetics, pharmaceutical and other fields due to its unique physical and chemical properties and physiological functions. In recent years, with the continuous development of strategies such as synthetic biology, metabolic engineering, omics-based systems biology and high-throughput screening technology, people's understanding of the erythritol biosynthesis pathway has gradually deepened, and microbial cell factories with independent modification capabilities have been successfully constructed. In this review, the cheap feedstocks for erythritol synthesis are introduced in detail, the environmental factors affecting the synthesis of erythritol and its regulatory mechanism are described, and the tools and strategies of metabolic engineering involved in erythritol synthesis are summarized. In addition, the study of erythritol derivatives is helpful in expanding its application field. Finally, the challenges that hinder the effective production of erythritol are discussed, which lay a foundation for the green, efficient and sustainable production of erythritol in the future and breaking through the bottleneck of production.
Collapse
Affiliation(s)
- Meng Li
- School of Biological Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, China
| | - Zifu Ni
- School of Biological Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, China.
| | - Zhongzeng Li
- School of Biological Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, China
| | - Yanli Yin
- School of Biological Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, China
| | - Jianguang Liu
- School of Biological Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, China
| | - Dapeng Wu
- School of Environment, Henan Normal University, Xinxiang, 453001, China
| | - Zhongke Sun
- School of Biological Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, China
| | - Le Wang
- School of Biological Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, China.
| |
Collapse
|
6
|
Maslanka R, Bednarska S, Zadrag-Tecza R. Virtually identical does not mean exactly identical: Discrepancy in energy metabolism between glucose and fructose fermentation influences the reproductive potential of yeast cells. Arch Biochem Biophys 2024; 756:110021. [PMID: 38697344 DOI: 10.1016/j.abb.2024.110021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
The physiological efficiency of cells largely depends on the possibility of metabolic adaptations to changing conditions, especially on the availability of nutrients. Central carbon metabolism has an essential role in cellular function. In most cells is based on glucose, which is the primary energy source, provides the carbon skeleton for the biosynthesis of important cell macromolecules, and acts as a signaling molecule. The metabolic flux between pathways of carbon metabolism such as glycolysis, pentose phosphate pathway, and mitochondrial oxidative phosphorylation is dynamically adjusted by specific cellular economics responding to extracellular conditions and intracellular demands. Using Saccharomyces cerevisiae yeast cells and potentially similar fermentable carbon sources i.e. glucose and fructose we analyzed the parameters concerning the metabolic status of the cells and connected with them alteration in cell reproductive potential. Those parameters were related to the specific metabolic network: the hexose uptake - glycolysis and activity of the cAMP/PKA pathway - pentose phosphate pathway and biosynthetic capacities - the oxidative respiration and energy generation. The results showed that yeast cells growing in a fructose medium slightly increased metabolism redirection toward respiratory activity, which decreased pentose phosphate pathway activity and cellular biosynthetic capabilities. These differences between the fermentative metabolism of glucose and fructose, lead to long-term effects, manifested by changes in the maximum reproductive potential of cells.
Collapse
Affiliation(s)
- Roman Maslanka
- Institute of Biology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland.
| | - Sabina Bednarska
- Institute of Biology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Renata Zadrag-Tecza
- Institute of Biology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
7
|
Taratynova MO, Tikhonova EE, Fedyaeva IM, Dementev DA, Yuzbashev TV, Solovyev AI, Sineoky SP, Yuzbasheva EY. Boosting Geranyl Diphosphate Synthesis for Linalool Production in Engineered Yarrowia lipolytica. Appl Biochem Biotechnol 2024; 196:1304-1315. [PMID: 37392322 DOI: 10.1007/s12010-023-04581-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 07/03/2023]
Abstract
Linalool is a pleasant-smelling monoterpenoid widely found in the essential oils of most flowers. Due to its biologically active properties, linalool has considerable commercial potential, especially in the food and perfume industries. In this study, the oleaginous yeast Yarrowia lipolytica was successfully engineered to produce linalool de novo. The (S)-linalool synthase (LIS) gene from Actinidia argute was overexpressed to convert geranyl diphosphate (GPP) into linalool. Flux was diverted from farnesyl diphosphate (FPP) synthesis to GPP by introducing a mutated copy of the native ERG20F88W-N119W gene, and CrGPPS gene from Catharanthus roseus on its own and as part of a fusion with LIS. Disruption of native diacylglycerol kinase enzyme, DGK1, by oligo-mediated CRISPR-Cas9 inactivation further increased linalool production. The resulting strain accumulated 109.6 mg/L of linalool during cultivation in shake flasks with sucrose as a carbon source. CrGPPS expression in Yarrowia lipolytica increased linalool accumulation more efficiently than the ERG20F88W-N119W expression, suggesting that the increase in linalool production was predominantly influenced by the level of GPP precursor supply.
Collapse
Affiliation(s)
- Maria O Taratynova
- NRC "Kurchatov Institute", Kurchatov Genomic Center, sq. Academician Kurchatova, 1, Moscow, 123182, Russia.
| | - Ekaterina E Tikhonova
- NRC "Kurchatov Institute", Kurchatov Genomic Center, sq. Academician Kurchatova, 1, Moscow, 123182, Russia
| | - Iuliia M Fedyaeva
- NRC "Kurchatov Institute", Kurchatov Genomic Center, sq. Academician Kurchatova, 1, Moscow, 123182, Russia
| | - Dmitry A Dementev
- NRC "Kurchatov Institute", Kurchatov Genomic Center, sq. Academician Kurchatova, 1, Moscow, 123182, Russia
| | - Tigran V Yuzbashev
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, AL5 2JQ, West Common, UK
| | - Andrey I Solovyev
- Gamaleya National Research Center of Epidemiology and Microbiology, Russian Ministry of Health, Gamaleya St. 18, Moscow, 123098, Russia
| | - Sergey P Sineoky
- NRC "Kurchatov Institute", Kurchatov Genomic Center, sq. Academician Kurchatova, 1, Moscow, 123182, Russia
| | - Evgeniya Y Yuzbasheva
- BioMediCan Inc, 40471 Encyclopedia Circle, Fremont, CA, 94538, USA
- BioKai Inc, 40471 Encyclopedia Circle, Fremont, CA, 94538, USA
| |
Collapse
|
8
|
Rywińska A, Tomaszewska-Hetman L, Lazar Z, Juszczyk P, Sałata P, Malek K, Kawecki A, Rymowicz W. Application of New Yarrowia lipolytica Transformants in Production of Citrates and Erythritol from Glycerol. Int J Mol Sci 2024; 25:1475. [PMID: 38338753 PMCID: PMC10855631 DOI: 10.3390/ijms25031475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Citric acid and erythritol are obtained on an industrial scale using biotechnological methods. Due to the growing market demand for these products, research is underway to improve the process economics by introducing new microorganisms, in particular of the species Yarrowia lipolytica. The aim of this study was to evaluate transformants of Y. lipolytica for growth and ability to overproduce citric acids and erythritol from glycerol. The transformants were constructed by overexpressing glycerol kinase, methylcitrate synthase and mitochondrial succinate-fumarate transporter in the mutant Wratislavia 1.31. Next, strains were assessed for biosynthesis of citrate (pH 5.5; nitrogen limitation) and erythritol (pH 3.0; high osmotic pressure) from glycerol. Regardless of culture conditions strains, 1.31.GUT1/6 and 1.31.GUT1/6.CIT1/3 exhibited high rates of substrate utilization. Under conditions favoring citrate biosynthesis, both strains produced several percent more citrates, accompanied by higher erythritol production compared to the parental strain. During erythritol biosynthesis, the strain 1.31.GUT1/6.CIT1/3.E34672g obtained as a result of co-expression of all three genes stood out, producing 84.0 g/L of erythritol with yield and productivity of 0.54 g/g and 0.72 g/Lh, respectively, which places it in the group of the highest-ranked producers of erythritol among Y. lipolytica species.
Collapse
Affiliation(s)
| | - Ludwika Tomaszewska-Hetman
- Department of Biotechnology and Food Microbiology, The Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-630 Wrocław, Poland; (A.R.); (Z.L.); (P.J.); (P.S.); (A.K.); (W.R.)
| | | | | | | | | | | | | |
Collapse
|
9
|
Pereira-Junior SAG, Costa RV, Rodrigues JL, Torrecilhas JA, Chiaratti MR, Lanna DPD, das Chagas JC, Nociti RP, Meirelles FV, Ferraz JBS, Fernandes MHMR, Almeida MTC, Ezequiel JMB. Soybean molasses increases subcutaneous fat deposition while reducing lipid oxidation in the meat of castrated lambs. J Anim Sci 2024; 102:skae130. [PMID: 38719973 PMCID: PMC11208934 DOI: 10.1093/jas/skae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/07/2024] [Indexed: 06/29/2024] Open
Abstract
This study aimed to evaluate the effect of including soybean molasses (SM) on performance, blood parameters, carcass traits, meat quality, fatty acid, and muscle (longissimus thoracis) transcriptomic profiles of castrated lambs. Twenty Dorper × Santa Inês lambs (20.06 ± 0.76 kg body weight [BW]) were assigned to a randomized block design, stratified by BW, with the following treatments: CON: 0 g/kg of SM and SM20: 200 g/kg of SM on dry matter basis, allocated in individual pens. The diet consisted of 840 g/kg concentrate and 160 g/kg corn silage for 76 d, with the first 12 d as an adaptation period and the remaining 64 d on the finishing diet. The SM20 diet increased blood urea concentration (P = 0.03) while reduced glucose concentration (P = 0.04). Lambs fed SM showed higher subcutaneous fat deposition (P = 0.04) and higher subcutaneous adipocyte diameter (P < 0.01), in addition to reduced meat lipid oxidation (P < 0.01). SM reduced the quantity of branched-chain fatty acids in longissimus thoracis (P = 0.05) and increased the quantity of saturated fatty acids (P = 0.01). In the transcriptomic analysis, 294 genes were identified as differentially expressed, which belong to pathways such as oxidative phosphorylation, citric acid cycle, and monosaccharide metabolic process. In conclusion, diet with SM increased carcass fat deposition, reduced lipid oxidation, and changed the energy metabolism, supporting its use in ruminant nutrition.
Collapse
Affiliation(s)
- Sérgio A G Pereira-Junior
- Department of Animal Science, Agrarian Science and Veterinary College, São Paulo State University “Unesp”, Jaboticabal, SP, Brazil
| | - Rayanne V Costa
- Department of Animal Science, Agrarian Science and Veterinary College, São Paulo State University “Unesp”, Jaboticabal, SP, Brazil
| | - Julia L Rodrigues
- Department of Animal Science, Agrarian Science and Veterinary College, São Paulo State University “Unesp”, Jaboticabal, SP, Brazil
| | - Juliana A Torrecilhas
- Department of Animal Production, Veterinary Medicine and Animal Science College, São Paulo State University “Unesp”, Botucatu, SP, Brazil
| | - Marcos R Chiaratti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Dante P D Lanna
- Department of Animal Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Julia C das Chagas
- Department of Animal Science, Agrarian Science and Veterinary College, São Paulo State University “Unesp”, Jaboticabal, SP, Brazil
| | - Ricardo P Nociti
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SPBrazil
| | - Flavio V Meirelles
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SPBrazil
| | - José Bento S Ferraz
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SPBrazil
| | - Márcia H M R Fernandes
- Department of Animal Science, Agrarian Science and Veterinary College, São Paulo State University “Unesp”, Jaboticabal, SP, Brazil
| | - Marco Túlio C Almeida
- Department of Animal Science, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Jane M B Ezequiel
- Department of Animal Science, Agrarian Science and Veterinary College, São Paulo State University “Unesp”, Jaboticabal, SP, Brazil
| |
Collapse
|
10
|
Yang W, Zhao X, Han M, Li Y, Tian Y, Rong Z, Zhang J. Recent advances in biosynthesis mechanisms and yield enhancement strategies of erythritol. Crit Rev Food Sci Nutr 2023; 64:13112-13132. [PMID: 37791716 DOI: 10.1080/10408398.2023.2260869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Erythritol is a four-carbon sugar alcohol naturally produced by microorganisms as an osmoprotectant. As a new sugar substitute, erythritol has recently been popular on the ingredient market because of its unique nutritional characteristics. Even though the history of erythritol biosynthesis dates from the turn of the twentieth century, scientific advancement has lagged behind other polyols due to the relative complexity of making it. In recent years, biosynthetic methods for erythritol have been rapidly developed due to an increase in market demand, a better understanding of metabolic pathways, and the rapid development of genetic engineering tools. This paper reviews the history of industrial strain development and focuses on the underlying mechanism of high erythritol production by strains gained through screening or mutagenesis. Meanwhile, we highlight the metabolic pathway knowledge of erythritol biosynthesis in microorganisms and summarize the metabolic engineering and research progress on critical genes involved in different stages of the synthetic pathway. Lastly, we talk about the still-contentious issues and promising future research directions that will help break the erythritol production bottleneck and make erythritol production greener and more sustainable.
Collapse
Affiliation(s)
- Wenli Yang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xiangying Zhao
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Mo Han
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yuchen Li
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yanjun Tian
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Zhangbo Rong
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jiaxiang Zhang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
11
|
Xu S, Zhang X, Zhang Y, Li Q, Ji L, Cheng H. Concomitant Production of Erythritol and β-Carotene by Engineered Yarrowia lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37466300 DOI: 10.1021/acs.jafc.3c03033] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
While the expansion of the erythritol production industry has resulted in unprecedented production of yeast cells, it also suffers from a lack of effective utilization. β-Carotene is a value-added compound that can be synthesized by engineered Yarrowia lipolytica. Here, we first evaluated the production performance of erythritol-producing yeast strains under two different morphologies and then successfully constructed a chassis with yeast-like morphology by deleting Mhy1 and Cla4 genes. Subsequently, β-carotene synthesis pathway genes, CarRA and CarB from Blakeslea trispora, were introduced to construct the β-carotene and erythritol coproducing Y. lipolytica strain ylmcc. The rate-limiting genes GGS1 and tHMG1 were overexpressed to increase the β-carotene yield by 45.32-fold compared with the strain ylmcc. However, increased β-carotene accumulation led to prolonged fermentation time; therefore, transporter engineering through overexpression of YTH1 and YTH3 genes was used to alleviate fermentation delays. Using batch fermentation in a 3 L bioreactor, this engineered Y. lipolytica strain produced erythritol with production, yield, and productivity values of 171 g/L, 0.56 g/g glucose, and 2.38 g/(L·h), respectively, with a concomitant β-carotene yield of 47.36 ± 0.06 mg/g DCW. The approach presented here improves the value of erythritol-producing cells and offers a low-cost technique to obtain hydrophobic terpenoids.
Collapse
Affiliation(s)
- Shuo Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyi Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Li
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liyun Ji
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Chu N, Chan JCN, Chow E. A diet high in FODMAPs as a novel dietary strategy in diabetes? Clin Nutr 2022; 41:2103-2112. [DOI: 10.1016/j.clnu.2022.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 07/04/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022]
|