1
|
Duman E, Müller-Deubert S, Pattappa G, Stratos I, Sieber SA, Clausen-Schaumann H, Sarafian V, Shukunami C, Rudert M, Docheva D. Fluoroquinolone-Mediated Tendinopathy and Tendon Rupture. Pharmaceuticals (Basel) 2025; 18:184. [PMID: 40005998 PMCID: PMC11858458 DOI: 10.3390/ph18020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
The fluoroquinolone (FQ) class of antibiotics includes the world's most prescribed antibiotics such as ciprofloxacin, levofloxacin, and ofloxacin that are known for their low bacterial resistance. This is despite their potential to trigger severe side effects, such as myopathy, hearing loss, tendinopathy, and tendon rupture. Thus, healthcare organizations around the world have recommended limiting the prescription of FQs. Tendinopathy is a common name for maladies that cause pain and degeneration in the tendon tissue, which can result in tendon rupture. Whilst there are several identified effects of FQ on tendons, the exact molecular mechanisms behind FQ-mediated tendon rupture are unclear. Previous research studies indicated that FQ-mediated tendinopathy and tendon rupture can be induced by changes in gene expression, metabolism, and function of tendon resident cells, thus leading to alterations in the extracellular matrix. Hence, this review begins with an update on FQs, their mode of action, and their known side effects, as well as summary information on tendon tissue structure and cellular content. Next, how FQs affect the tendon tissue and trigger tendinopathy and tendon rupture is explored in detail. Lastly, possible preventative measures and promising areas for future research are also discussed. Specifically, follow-up studies should focus on understanding the FQ-mediated tendon changes in a more complex manner and integrating in vitro with in vivo models. With respect to in vitro systems, the field should move towards three-dimensional models that reflect the cellular diversity found in the tissue.
Collapse
Affiliation(s)
- Ezgi Duman
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, 97070 Würzburg, Germany; (S.M.-D.); (G.P.)
| | - Sigrid Müller-Deubert
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, 97070 Würzburg, Germany; (S.M.-D.); (G.P.)
| | - Girish Pattappa
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, 97070 Würzburg, Germany; (S.M.-D.); (G.P.)
| | - Ioannis Stratos
- Department of Orthopaedics, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, 97070 Würzburg, Germany; (I.S.); (M.R.)
| | - Stephan A. Sieber
- Center for Functional Protein Assemblies, Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany;
| | - Hauke Clausen-Schaumann
- Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), University of Applied Sciences, 80335 Munich, Germany;
| | - Victoria Sarafian
- Department of Medical Biology, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
- Research Institute, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Maximilian Rudert
- Department of Orthopaedics, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, 97070 Würzburg, Germany; (I.S.); (M.R.)
| | - Denitsa Docheva
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, 97070 Würzburg, Germany; (S.M.-D.); (G.P.)
| |
Collapse
|
2
|
Marr N, Meeson R, Piercy RJ, Hildyard JCW, Thorpe CT. Evaluation of suitable reference genes for qPCR normalisation of gene expression in a Achilles tendon injury model. PLoS One 2024; 19:e0306678. [PMID: 39190750 DOI: 10.1371/journal.pone.0306678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Tendons are one of the major load-bearing tissues in the body; subjected to enormous peak stresses, and thus vulnerable to injury. Cellular responses to tendon injury are complex, involving inflammatory and repair components, with the latter employing both resident and recruited exogenous cell populations. Gene expression analyses are valuable tools for investigating tendon injury, allowing assessment of repair processes and pathological responses such as fibrosis, and permitting evaluation of therapeutic pharmacological interventions. Quantitative polymerase chain reaction (qPCR) is a commonly used approach for such studies, but data obtained by this method must be normalised to reference genes: genes known to be stably expressed between the experimental conditions investigated. Establishing suitable tendon injury reference genes is thus essential. Accordingly we investigated mRNA expression stability in a rat model of tendon injury, comparing both injured and uninjured tendons, and the effects of rapamycin treatment, at 1 and 3 weeks post injury. We used 11 candidate genes (18S, ACTB, AP3D1, B2M, CSNK2A2, GAPDH, HPRT1, PAK1IP1, RPL13a, SDHA, UBC) and assessed stability via four complementary algorithms (Bestkeeper, deltaCt, geNorm, Normfinder). Our results suggests that ACTB, CSNK2A2, HPRT1 and PAK1IP1 are all stably expressed in tendon, regardless of injury or drug treatment: any three of these would serve as universally suitable reference gene panel for normalizing qPCR expression data in the rat tendon injury model. We also reveal 18S, UBC, GAPDH, and SDHA as consistently poor scoring candidates (with the latter two exhibiting rapamycin- and injury-associated changes, respectively): these genes should be avoided.
Collapse
Affiliation(s)
- Neil Marr
- Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Richard Meeson
- Clinical Sciences and Services, Royal Veterinary College, Hatfield, United Kingdom
| | - Richard J Piercy
- Clinical Sciences and Services, Royal Veterinary College, Hatfield, United Kingdom
| | - John C W Hildyard
- Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Chavaunne T Thorpe
- Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| |
Collapse
|
3
|
Beaumont RE, Smith EJ, Zhou L, Marr N, Thorpe CT, Guest DJ. Exogenous interleukin-1 beta stimulation regulates equine tenocyte function and gene expression in three-dimensional culture which can be rescued by pharmacological inhibition of interleukin 1 receptor, but not nuclear factor kappa B, signaling. Mol Cell Biochem 2024; 479:1059-1078. [PMID: 37314623 PMCID: PMC11116237 DOI: 10.1007/s11010-023-04779-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/27/2023] [Indexed: 06/15/2023]
Abstract
We investigated how Interleukin 1 beta (IL-1β) impacts equine tenocyte function and global gene expression in vitro and determined if these effects could be rescued by pharmacologically inhibiting nuclear factor-κB (NF-KB) or interleukin 1 signalling. Equine superficial digital flexor tenocytes were cultured in three-dimensional (3D) collagen gels and stimulated with IL-1β for two-weeks, with gel contraction and interleukin 6 (IL6) measured throughout and transcriptomic analysis performed at day 14. The impact of three NF-KB inhibitors on gel contraction and IL6 secretion were measured in 3D culture, with NF-KB-P65 nuclear translocation by immunofluorescence and gene expression by qPCR measured in two-dimensional (2D) monolayer culture. In addition, daily 3D gel contraction and transcriptomic analysis was performed on interleukin 1 receptor antagonist-treated 3D gels at day 14. IL-1β increased NF-KB-P65 nuclear translocation in 2D culture and IL6 secretion in 3D culture, but reduced daily tenocyte 3D gel contraction and impacted > 2500 genes at day 14, with enrichment for NF-KB signaling. Administering direct pharmacological inhibitors of NF-KB did reduce NF-KB-P65 nuclear translocation, but had no effect on 3D gel contraction or IL6 secretion in the presence of IL-1β. However, IL1Ra restored 3D gel contraction and partially rescued global gene expression. Tenocyte 3D gel contraction and gene expression is adversely impacted by IL-1β which can only be rescued by blockade of interleukin 1 receptor, but not NF-KB, signalling.
Collapse
Affiliation(s)
- Ross Eric Beaumont
- Clinical Sciences and Service, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Herts, UK.
| | - Emily Josephine Smith
- Clinical Sciences and Service, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Herts, UK
| | - Lexin Zhou
- Clinical Sciences and Service, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Herts, UK
| | - Neil Marr
- Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Chavaunne T Thorpe
- Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Deborah Jane Guest
- Clinical Sciences and Service, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Herts, UK
| |
Collapse
|
4
|
Kouroupis D, Perucca Orfei C, Correa D, Talò G, Libonati F, De Luca P, Raffo V, Best TM, de Girolamo L. Cellular and Structural Changes in Achilles and Patellar Tendinopathies: A Pilot In Vivo Study. Biomedicines 2024; 12:995. [PMID: 38790957 PMCID: PMC11117798 DOI: 10.3390/biomedicines12050995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Tendinopathies continue to be a challenge for both patients and the medical teams providing care as no universal clinical practice guidelines have been established. In general, tendinopathies are typically characterized by prolonged, localized, activity-related pain with abnormalities in tissue composition, cellularity, and microstructure that may be observed on imaging or histology. In the lower limb, tendinopathies affecting the Achilles and the patellar tendons are the most common, showing a high incidence in athletic populations. Consistent diagnosis and management have been challenged by a lack of universal consensus on the pathophysiology and clinical presentation. Current management is primarily based on symptom relief and often consists of medications such as non-steroidal anti-inflammatories, injectable therapies, and exercise regimens that typically emphasize progressive eccentric loading of the affected structures. Implementing the knowledge of tendon stem/progenitor cells (TSPCs) and assessing their potential in enhancing tendon repair could fill an important gap in this regard. In the present pilot in vivo study, we have characterized the structural and cellular alterations that occur soon after tendon insult in models of both Achilles and patellar tendinopathy. Upon injury, CD146+ TSPCs are recruited from the interfascicular tendon matrix to the vicinity of the paratenon, whereas the observed reduction in M1 macrophage polarization is related to a greater abundance of reparative CD146+ TSPCs in situ. The robust TSPCs' immunomodulatory effects on macrophages were also demonstrated in in vitro settings where TSPCs can effectively polarize M1 macrophages towards an anti-inflammatory therapeutic M2 phenotype. Although preliminary, our findings suggest CD146+ TSPCs as a key phenotype that could be explored in the development of targeted regenerative therapies for tendinopathies.
Collapse
Affiliation(s)
- Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (D.K.)
- Diabetes Research Institute & Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Carlotta Perucca Orfei
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via C. Belgioioso 173, 20157 Milan, Italy (L.d.G.)
| | - Diego Correa
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (D.K.)
- Diabetes Research Institute & Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Giuseppe Talò
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Via C. Belgioioso 173, 20157 Milan, Italy
| | - Francesca Libonati
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via C. Belgioioso 173, 20157 Milan, Italy (L.d.G.)
| | - Paola De Luca
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via C. Belgioioso 173, 20157 Milan, Italy (L.d.G.)
| | - Vincenzo Raffo
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via C. Belgioioso 173, 20157 Milan, Italy (L.d.G.)
| | - Thomas M. Best
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (D.K.)
| | - Laura de Girolamo
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via C. Belgioioso 173, 20157 Milan, Italy (L.d.G.)
| |
Collapse
|
5
|
Zamboulis DE, Marr N, Lenzi L, Birch HL, Screen HRC, Clegg PD, Thorpe CT. The Interfascicular Matrix of Energy Storing Tendons Houses Heterogenous Cell Populations Disproportionately Affected by Aging. Aging Dis 2024; 15:295-310. [PMID: 37307816 PMCID: PMC10796100 DOI: 10.14336/ad.2023.0425-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/25/2023] [Indexed: 06/14/2023] Open
Abstract
Energy storing tendons such as the human Achilles and equine superficial digital flexor tendon (SDFT) are prone to injury, with incidence increasing with aging, peaking in the 5th decade of life in the human Achilles tendon. The interfascicular matrix (IFM), which binds tendon fascicles, plays a key role in energy storing tendon mechanics, and aging alterations to the IFM negatively impact tendon function. While the mechanical role of the IFM in tendon function is well-established, the biological role of IFM-resident cell populations remains to be elucidated. Therefore, the aim of this study was to identify IFM-resident cell populations and establish how these populations are affected by aging. Cells from young and old SDFTs were subjected to single cell RNA-sequencing, and immunolabelling for markers of each resulting population used to localise cell clusters. Eleven cell clusters were identified, including tenocytes, endothelial cells, mural cells, and immune cells. One tenocyte cluster localised to the fascicular matrix, whereas nine clusters localised to the IFM. Interfascicular tenocytes and mural cells were preferentially affected by aging, with differential expression of genes related to senescence, dysregulated proteostasis and inflammation. This is the first study to establish heterogeneity in IFM cell populations, and to identify age-related alterations specific to IFM-localised cells.
Collapse
Affiliation(s)
- Danae E. Zamboulis
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, NW1 0TU, UK.
| | - Neil Marr
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, NW1 0TU, UK.
| | - Luca Lenzi
- Centre for Genomic Research, University of Liverpool, Liverpool, L69 7ZB, UK.
| | - Helen L. Birch
- Department of Orthopaedics and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK.
| | - Hazel R. C. Screen
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK.
| | - Peter D. Clegg
- Department of Musculoskeletal and AgingScience, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK.
| | - Chavaunne T. Thorpe
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, NW1 0TU, UK.
| |
Collapse
|
6
|
Leong NL, Wu J, Greskovich KE, Li Y, Jiang J. Pdgfrβ + lineage cells transiently increase at the site of Achilles tendon healing. J Orthop Res 2023; 41:1882-1889. [PMID: 36922361 DOI: 10.1002/jor.25552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/01/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023]
Abstract
The purpose of this study was to track platelet-derived growth factor receptor-β (Pdgfr-β) lineage cells at the site of Achilles tendon injury over time. Pdgfr-β-CreERT2 :Ai9 mice were generated to track Pdgfr-β lineage cells in adult mice. A surgical Achilles transection injury model was employed to examine the presence of Pdgfr-β lineage cells in the healing tendon over time, with five mice per time point at 3, 7, 14, 28, and 56 days postoperatively. Histology and immunohistochemistry for tdTomato (Pdgfr-β lineage cells), PCNA (proliferating cell nuclear antigen, cell proliferation), and α-SMA (α-smooth muscle actin, myofibroblasts) were performed. The percentage of cells at the healing tendon site staining positive for tdTomato and PCNA were quantified. Over 75% of cells at the injury site were Pdgfr-β lineage cells at Days 3, 7, and 14, and this percentage decreased significantly by Days 28 and 56 postinjury. Cell proliferation at the injury site peaked on Day 7 and decreased thereafter. Immunohistochemistry for α-SMA demonstrated minimal colocalization of myofibroblasts with Pdgfr-β lineage cells. This study demonstrates that in a mouse model of Achilles tendon injury, Pdgfr-β lineage cells' presence at the injury site is transient. Thus, we conclude that they are unlikely to be the cells that differentiate into myofibroblasts and directly contribute to tendon fibrous scar formation. Clinical Significance: This study provides some insight into the presence of Pdgfr-β lineage cells (including pericytes) following Achilles injury, furthering our understanding of tendon healing.
Collapse
Affiliation(s)
- Natalie L Leong
- Baltimore VA Medical Center, VA Maryland Healthcare System, Baltimore, Maryland, USA
- Department of Orthopaedic Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jocelyn Wu
- Department of Orthopaedic Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kathryn E Greskovich
- Baltimore VA Medical Center, VA Maryland Healthcare System, Baltimore, Maryland, USA
- Department of Orthopaedic Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yang Li
- Department of Orthopaedic Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jie Jiang
- Department of Orthopaedic Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Guo J, Tang H, Huang P, Ye X, Tang C, Shu Z, Guo J, Kang X, Shi Y, Zhou B, Liang T, Tang K. Integrative single-cell RNA and ATAC sequencing reveals that the FOXO1-PRDX2-TNF axis regulates tendinopathy. Front Immunol 2023; 14:1092778. [PMID: 37223090 PMCID: PMC10200929 DOI: 10.3389/fimmu.2023.1092778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/25/2023] [Indexed: 05/25/2023] Open
Abstract
Introduction Tendinopathy, the most common form of chronic tendon disorder, leads to persistent tendon pain and loss of function. Profiling the heterogeneous cellular composition in the tendon microenvironment helps to elucidate rational molecular mechanisms of tendinopathy. Methods and results In this study, through a multi-modal analysis, a single-cell RNA- and ATAC-seq integrated tendinopathy landscape was generated for the first time. We found that a specific cell subpopulation with low PRDX2 expression exhibited a higher level of inflammation, lower proliferation and migration ability, which not only promoted tendon injury but also led to microenvironment deterioration. Mechanistically, a motif enrichment analysis of chromatin accessibility showed that FOXO1 was an upstream regulator of PRDX2 transcription, and we confirmed that functional blockade of FOXO1 activity induced PRDX2 silencing. The TNF signaling pathway was significantly activated in the PRDX2-low group, and TNF inhibition effectively restored diseased cell degradation. Discussion We revealed an essential role of diseased cells in tendinopathy and proposed the FOXO1-PRDX2-TNF axis is a potential regulatory mechanism for the treatment of tendinopathy.
Collapse
Affiliation(s)
- Junfeng Guo
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hong Tang
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Pan Huang
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiao Ye
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chuyue Tang
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhao Shu
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junfeng Guo
- Department of Stomatology, The 970th Hospital of the Joint Logistics Support Force, Yantai, China
| | - Xia Kang
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Youxing Shi
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Binghua Zhou
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Taotao Liang
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Kanglai Tang
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
8
|
Quintero D, Perucca Orfei C, Kaplan LD, de Girolamo L, Best TM, Kouroupis D. The roles and therapeutic potentialof mesenchymal stem/stromal cells and their extracellular vesicles in tendinopathies. Front Bioeng Biotechnol 2023; 11:1040762. [PMID: 36741745 PMCID: PMC9892947 DOI: 10.3389/fbioe.2023.1040762] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Tendinopathies encompass a highly prevalent, multi-faceted spectrum of disorders, characterized by activity-related pain, compromised function, and propensity for an extended absence from sport and the workplace. The pathophysiology of tendinopathy continues to evolve. For decades, it has been related primarily to repetitive overload trauma but more recently, the onset of tendinopathy has been attributed to the tissue's failed attempt to heal after subclinical inflammatory and immune challenges (failed healing model). Conventional tendinopathy management produces only short-term symptomatic relief and often results in incomplete repair or healing leading to compromised tendon function. For this reason, there has been increased effort to develop therapeutics to overcome the tissue's failed healing response by targeting the cellular metaplasia and pro-inflammatory extra-cellular environment. On this basis, stem cell-based therapies have been proposed as an alternative therapeutic approach designed to modify the course of the various tendon pathologies. Mesenchymal stem/stromal cells (MSCs) are multipotent stem cells often referred to as "medicinal signaling cells" due to their immunomodulatory and anti-inflammatory properties that can produce a pro-regenerative microenvironment in pathological tendons. However, the adoption of MSCs into clinical practice has been limited by FDA regulations and perceived risk of adverse events upon infusion in vivo. The introduction of cell-free approaches, such as the extracellular vesicles of MSCs, has encouraged new perspectives for the treatment of tendinopathies, showing promising short-term results. In this article, we review the most recent advances in MSC-based and MSC-derived therapies for tendinopathies. Preclinical and clinical studies are included with comment on future directions of this rapidly developing therapeutic modality, including the importance of understanding tissue loading and its relationship to any treatment regimen.
Collapse
Affiliation(s)
- Daniel Quintero
- Department of Orthopaedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Carlotta Perucca Orfei
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Lee D. Kaplan
- Department of Orthopaedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Laura de Girolamo
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Thomas M. Best
- Department of Orthopaedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Dimitrios Kouroupis
- Department of Orthopaedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States,Diabetes Research Institute & Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL, United States,*Correspondence: Dimitrios Kouroupis,
| |
Collapse
|
9
|
Marr N, Zamboulis DE, Werling D, Felder AA, Dudhia J, Pitsillides AA, Thorpe CT. The tendon interfascicular basement membrane provides a vascular niche for CD146+ cell subpopulations. Front Cell Dev Biol 2023; 10:1094124. [PMID: 36699014 PMCID: PMC9869387 DOI: 10.3389/fcell.2022.1094124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction: The interfascicular matrix (IFM; also known as the endotenon) is critical to the mechanical adaptations and response to load in energy-storing tendons, such as the human Achilles and equine superficial digital flexor tendon (SDFT). We hypothesized that the IFM is a tendon progenitor cell niche housing an exclusive cell subpopulation. Methods: Immunolabelling of equine superficial digital flexor tendon was used to identify the interfascicular matrix niche, localising expression patterns of CD31 (endothelial cells), Desmin (smooth muscle cells and pericytes), CD146 (interfascicular matrix cells) and LAMA4 (interfascicular matrix basement membrane marker). Magnetic-activated cell sorting was employed to isolate and compare in vitro properties of CD146+ and CD146- subpopulations. Results: Labelling for CD146 using standard histological and 3D imaging of large intact 3D segments revealed an exclusive interfascicular cell subpopulation that resides in proximity to a basal lamina which forms extensive, interconnected vascular networks. Isolated CD146+ cells exhibited limited mineralisation (osteogenesis) and lipid production (adipogenesis). Discussion: This study demonstrates that the interfascicular matrix is a unique tendon cell niche, containing a vascular-rich network of basement membrane, CD31+ endothelial cells, Desmin+ mural cells, and CD146+ cell populations that are likely essential to tendon structure and/or function. Contrary to our hypothesis, interfascicular CD146+ subpopulations did not exhibit stem cell-like phenotypes. Instead, our results indicate CD146 as a pan-vascular marker within the tendon interfascicular matrix. Together with previous work demonstrating that endogenous tendon CD146+ cells migrate to sites of injury, our data suggest that their mobilisation to promote intrinsic repair involves changes in their relationships with local interfascicular matrix vascular and basement membrane constituents.
Collapse
Affiliation(s)
- Neil Marr
- Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Danae E. Zamboulis
- Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Dirk Werling
- Pathobiology and Population Sciences, Centre for Vaccinology and Regenerative Medicine, Royal Veterinary College, Hatfield, United Kingdom
| | - Alessandro A. Felder
- Research Software Development Group, Advanced Research Computing, University College London, London, United Kingdom
| | - Jayesh Dudhia
- Clinical Sciences and Services, Royal Veterinary College, Hatfield, United Kingdom
| | | | - Chavaunne T. Thorpe
- Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| |
Collapse
|
10
|
Schulze-Tanzil GG. Healing of Ligaments and Tendons: Tissue Engineering and Models. Int J Mol Sci 2022; 23:ijms232415503. [PMID: 36555147 PMCID: PMC9778817 DOI: 10.3390/ijms232415503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
The aim of this Special Issue is to summarize the latest developments in tendon/ligament research and tissue engineering (TE), providing helpful approaches for future tendon/ligament reconstruction (Figure 1) [...].
Collapse
Affiliation(s)
- Gundula Gesine Schulze-Tanzil
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| |
Collapse
|
11
|
Schulze-Tanzil GG, Delgado-Calcares M, Stange R, Wildemann B, Docheva D. Tendon healing: a concise review on cellular and molecular mechanisms with a particular focus on the Achilles tendon. Bone Joint Res 2022; 11:561-574. [PMID: 35920195 PMCID: PMC9396922 DOI: 10.1302/2046-3758.118.bjr-2021-0576.r1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tendon is a bradytrophic and hypovascular tissue, hence, healing remains a major challenge. The molecular key events involved in successful repair have to be unravelled to develop novel strategies that reduce the risk of unfavourable outcomes such as non-healing, adhesion formation, and scarring. This review will consider the diverse pathophysiological features of tendon-derived cells that lead to failed healing, including misrouted differentiation (e.g. de- or transdifferentiation) and premature cell senescence, as well as the loss of functional progenitors. Many of these features can be attributed to disturbed cell-extracellular matrix (ECM) or unbalanced soluble mediators involving not only resident tendon cells, but also the cross-talk with immigrating immune cell populations. Unrestrained post-traumatic inflammation could hinder successful healing. Pro-angiogenic mediators trigger hypervascularization and lead to persistence of an immature repair tissue, which does not provide sufficient mechano-competence. Tendon repair tissue needs to achieve an ECM composition, structure, strength, and stiffness that resembles the undamaged highly hierarchically ordered tendon ECM. Adequate mechano-sensation and -transduction by tendon cells orchestrate ECM synthesis, stabilization by cross-linking, and remodelling as a prerequisite for the adaptation to the increased mechanical challenges during healing. Lastly, this review will discuss, from the cell biological point of view, possible optimization strategies for augmenting Achilles tendon (AT) healing outcomes, including adapted mechanostimulation and novel approaches by restraining neoangiogenesis, modifying stem cell niche parameters, tissue engineering, the modulation of the inflammatory cells, and the application of stimulatory factors.Cite this article: Bone Joint Res 2022;11(8):561-574.
Collapse
Affiliation(s)
| | - Manuel Delgado-Calcares
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Richard Stange
- Department of Regenerative Musculoskeletal Medicine, Institute for Musculoskeletal Medicine (IMM), University Hospital Münster, Münster, Germany
| | - Britt Wildemann
- Department of Experimental Trauma Surgery, University Hospital Jena, Jena, Germany
| | - Denitsa Docheva
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Gomez-Florit M, Labrador-Rached CJ, Domingues RM, Gomes ME. The tendon microenvironment: Engineered in vitro models to study cellular crosstalk. Adv Drug Deliv Rev 2022; 185:114299. [PMID: 35436570 DOI: 10.1016/j.addr.2022.114299] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022]
Abstract
Tendinopathy is a multi-faceted pathology characterized by alterations in tendon microstructure, cellularity and collagen composition. Challenged by the possibility of regenerating pathological or ruptured tendons, the healing mechanisms of this tissue have been widely researched over the past decades. However, so far, most of the cellular players and processes influencing tendon repair remain unknown, which emphasizes the need for developing relevant in vitro models enabling to study the complex multicellular crosstalk occurring in tendon microenvironments. In this review, we critically discuss the insights on the interaction between tenocytes and the other tendon resident cells that have been devised through different types of existing in vitro models. Building on the generated knowledge, we stress the need for advanced models able to mimic the hierarchical architecture, cellularity and physiological signaling of tendon niche under dynamic culture conditions, along with the recreation of the integrated gradients of its tissue interfaces. In a forward-looking vision of the field, we discuss how the convergence of multiple bioengineering technologies can be leveraged as potential platforms to develop the next generation of relevant in vitro models that can contribute for a deeper fundamental knowledge to develop more effective treatments.
Collapse
|