1
|
Wu X, Bu J, Niu X, Mahan Y, Zhang Y, Zhang X, Aizezi A, Yu X, Zhang S, Zhou L. Exploring gene expression, alternative splicing events and RNA-binding proteins changes in PBMC from patients with hyperuricemia. Gene 2025; 942:149256. [PMID: 39828062 DOI: 10.1016/j.gene.2025.149256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/07/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
AIM The objective of this study was to examine the transcriptomic profile changes in hyperuricemia (HUA) and to investigate the pathogenic mechanisms and biomarkers of HUA from a transcriptomic perspective. METHODS In this study, three patients with HUA were randomly selected and matched with three healthy controls. Six participants provided peripheral blood mononuclear cells (PBMCs) for analysis. RNA sequencing (RNA-seq) was used to identify differentially expressed genes (DEGs) and alternative splicing events (ASEs). Gene Ontology (GO) biological processes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to identify the functions and pathways of the DEGs and ASEs. Additionally, a co-expression network was constructed to analyze the regulation of DEGs and ASEs by RNA-binding protein (RBP) genes. In addition, important DEGs and ASEs were validated using quantitative real-time PCR (qPCR). RESULTS There were 633 DEGs identified, 348 up-regulated DEGs and 285 down-regulated DEGs, including RGS18, CAVIN2, GZMH, GNLY and MT-TV, which were mainly enriched in inflammatory and immune-related biological processes. A total of 1542 ASEs were significantly differentially expressed in HUA, of which LTB4R and ENTPD4 were closely associated with the development of HUA. In addition, 15 RBP genes were detected to be differentially expressed in HUA. Three RBP genes (IFIT1, IFFIT2, and IFIT3) were highly associated with immunoinflammation and affected HUA by modulating downstream immune responses, inflammatory response-associated DEGs, and ASEs. The selected five DEGs and two ASEs were verified by qPCR, which was consistent with the results of RNA sequencing. CONCLUSIONS In summary, the findings indicate that HUA is associated with significant changes in inflammatory and immune response-related genes (RGS18, CAVIN2, GZMH, GNLY, MT-TV, LTB4R, ENTPD4, IFIT1, IFFIT2, and IFIT3). These findings suggest potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Xuanxia Wu
- Medical and Translational Research Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Juan Bu
- Medical and Translational Research Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Xiaoshan Niu
- Department of General Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Yeledan Mahan
- Medical and Translational Research Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Yanmin Zhang
- Scientific Research and Education Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Xiaoling Zhang
- Medical and Translational Research Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Abulaiti Aizezi
- Department of General Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Xia Yu
- Department of General Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Shengnan Zhang
- Medical and Translational Research Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Ling Zhou
- Medical and Translational Research Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China.
| |
Collapse
|
2
|
Jacob AG, Moutsopoulos I, Petchey A, Kollyfas R, Knight-Schrijver VR, Mohorianu I, Sinha S, Smith CWJ. RNA binding protein with multiple splicing (RBPMS) promotes contractile phenotype splicing in human embryonic stem cell-derived vascular smooth muscle cells. Cardiovasc Res 2024; 120:2104-2116. [PMID: 39248180 PMCID: PMC11646123 DOI: 10.1093/cvr/cvae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/12/2024] [Accepted: 07/14/2024] [Indexed: 09/10/2024] Open
Abstract
AIMS Differentiated vascular smooth muscle cells (VSMCs) express a unique network of mRNA isoforms via smooth muscle-specific alternative pre-mRNA splicing (SM-AS) in functionally critical genes, including those comprising the contractile machinery. We previously described RNA Binding Protein with Multiple Splicing (RBPMS) as a potent driver of differentiated SM-AS in the rat PAC1 VSMC cell line. What is unknown is how RBPMS affects VSMC phenotype and behaviour. Here, we aimed to dissect the role of RBPMS in SM-AS in human cells and determine the impact on VSMC phenotypic properties. METHODS AND RESULTS We used human embryonic stem cell-derived VSMCs (hESC-VSMCs) as our platform. hESC-VSMCs are inherently immature, and we found that they display only partially differentiated SM-AS patterns while RBPMS protein levels are low. We found that RBPMS over-expression induces SM-AS patterns in hESC-VSMCs akin to the contractile tissue VSMC splicing patterns. We present in silico and experimental findings that support RBPMS' splicing activity as mediated through direct binding and via functional cooperativity with splicing factor RBFOX2 on a significant subset of targets. We also demonstrate that RBPMS can alter the motility and the proliferative properties of hESC-VSMCs to mimic a more differentiated state. CONCLUSION Overall, this study emphasizes a critical role for RBPMS in establishing the contractile phenotype splicing programme of human VSMCs.
Collapse
Affiliation(s)
- Aishwarya G Jacob
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
- MRC-Wellcome Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
| | | | - Alex Petchey
- MRC-Wellcome Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
| | - Rafael Kollyfas
- MRC-Wellcome Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
| | | | - Irina Mohorianu
- MRC-Wellcome Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
| | - Sanjay Sinha
- MRC-Wellcome Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
| | | |
Collapse
|
3
|
Qi C, Ren H, Fan Y. Microglia specific alternative splicing alterations in multiple sclerosis. Aging (Albany NY) 2024; 16:11656-11667. [PMID: 39115871 PMCID: PMC11346782 DOI: 10.18632/aging.206045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/17/2024] [Indexed: 08/22/2024]
Abstract
Several aberrant alternative splicing (AS) events and their regulatory mechanisms are widely recognized in multiple sclerosis (MS). Yet the cell-type specific AS events have not been extensively examined. Here we assessed the diversity of AS events using web-based RNA-seq data of sorted CD15-CD11b+ microglia in white matter (WM) region from 10 patients with MS and 11 control subjects. The GSE111972 dataset was downloaded from GEO and ENA databases, aligned to the GRCh38 reference genome from ENSEMBL via STAR. rMATS was used to assess five types of AS events, alternative 3'SS (A3SS), alternative 5'SS (A5SS), skipped exon (SE), retained intron (RI) and mutually exclusive exons (MXE), followed by visualizing with rmats2sashimiplot and maser. Differential genes or transcripts were analyzed using the limma R package. Gene ontology (GO) analysis was performed with the clusterProfiler R package. 42,663 raw counts of AS events were identified and 132 significant AS events were retained based on the filtered criteria: 1) average coverage >10 and 2) delta percent spliced in (ΔPSI) >0.1. SE was the most common AS event (36.36%), followed by MXE events (32.58%), and RI (18.94%). Genes related to telomere maintenance and organization primarily underwent SE splicing, while genes associated with protein folding and mitochondrion organization were predominantly spliced in the MXE pattern. Conversely, genes experiencing RI were enriched in immune response and immunoglobulin production. In conclusion, we identified microglia-specific AS changes in the white matter of MS patients, which may shed light on novel pathological mechanisms underlying MS.
Collapse
Affiliation(s)
- Caiyun Qi
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Honglei Ren
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin, China
| | - Yong Fan
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Poznyak AV, Yakovlev AA, Popov MА, Zhigmitova EB, Sukhorukov VN, Orekhov AN. Atherosclerosis originating from childhood: Specific features. J Biomed Res 2024; 38:233-240. [PMID: 38777340 PMCID: PMC11144930 DOI: 10.7555/jbr.37.20230198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 05/25/2024] Open
Abstract
Atherosclerosis is extremely widespread. Traditionally, it is considered a disease of older people, who most often experience problems with the heart and blood vessels. While much attention from the scientific community has been paid to studying the association between aging and atherosclerosis, as well as its consequences, there is evidence that atherosclerosis occurs at an early age. Atherosclerosis may form both during intrauterine development and in childhood. Nutrition plays an important role in childhood atherosclerosis, along with previous infectious diseases and excess weight of both the child and the mother. In the present review, we examined the development of atherosclerosis and the prerequisites in childhood.
Collapse
Affiliation(s)
| | - Alexey A. Yakovlev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 109240, Russia
| | - Mikhail А. Popov
- Department of Cardiac Surgery, Moscow Regional Research and Clinical Institute, Moscow 129110, Russia
| | - Elena B. Zhigmitova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow 125315, Russia
| | - Vasily N. Sukhorukov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow 125315, Russia
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow 125315, Russia
| |
Collapse
|
5
|
Lohanadan K, Assent M, Linnemann A, Schuld J, Heukamp LC, Krause K, Vorgerd M, Reimann J, Schänzer A, Kirfel G, Fürst DO, Van der Ven PFM. Synaptopodin-2 Isoforms Have Specific Binding Partners and Display Distinct, Muscle Cell Type-Specific Expression Patterns. Cells 2023; 13:85. [PMID: 38201288 PMCID: PMC10778272 DOI: 10.3390/cells13010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Synaptopodin-2 (SYNPO2) is a protein associated with the Z-disc in striated muscle cells. It interacts with α-actinin and filamin C, playing a role in Z-disc maintenance under stress by chaperone-assisted selective autophagy (CASA). In smooth muscle cells, SYNPO2 is a component of dense bodies. Furthermore, it has been proposed to play a role in tumor cell proliferation and metastasis in many different kinds of cancers. Alternative transcription start sites and alternative splicing predict the expression of six putative SYNPO2 isoforms differing by extended amino- and/or carboxy-termini. Our analyses at mRNA and protein levels revealed differential expression of SYNPO2 isoforms in cardiac, skeletal and smooth muscle cells. We identified synemin, an intermediate filament protein, as a novel binding partner of the PDZ-domain in the amino-terminal extension of the isoforms mainly expressed in cardiac and smooth muscle cells, and demonstrated colocalization of SYNPO2 and synemin in both cell types. A carboxy-terminal extension, mainly expressed in smooth muscle cells, is sufficient for association with dense bodies and interacts with α-actinin. SYNPO2 therefore represents an additional and novel link between intermediate filaments and the Z-discs in cardiomyocytes and dense bodies in smooth muscle cells, respectively. In pathological skeletal muscle samples, we identified SYNPO2 in the central and intermediate zones of target fibers of patients with neurogenic muscular atrophy, and in nemaline bodies. Our findings help to understand distinct functions of individual SYNPO2 isoforms in different muscle tissues, but also in tumor pathology.
Collapse
Affiliation(s)
| | - Marvin Assent
- Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Anja Linnemann
- Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Julia Schuld
- Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Lukas C. Heukamp
- Department of Pathology, University Hospital Bonn, 53127 Bonn, Germany
| | - Karsten Krause
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Jens Reimann
- Department of Neurology, Neuromuscular Diseases Section, University Hospital Bonn, 53127 Bonn, Germany
| | - Anne Schänzer
- Institute of Neuropathology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Gregor Kirfel
- Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Dieter O. Fürst
- Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | | |
Collapse
|
6
|
Yang J, Fang M, Yu C, Li Z, Wang Q, Li C, Wu J, Fan R. Human aortic smooth muscle cell regulation by METTL3 via upregulation of m6A NOTCH1 modification and inhibition of NOTCH1. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:350. [PMID: 37675298 PMCID: PMC10477642 DOI: 10.21037/atm-22-1203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 10/14/2022] [Indexed: 09/08/2023]
Abstract
Background Thoracic aortic dissection (TAD) is a very serious vascular condition that requires immediate treatment. Phenotypic conversion of human aortic smooth muscle cells (HASMCs) has been reported to be a causal factor for TAD development. Genetic variations affecting RNA modification may play a functional role in TAD. In this study, we aimed to explore the potential role of the methyltransferase like 3 (METTL3) and notch homolog 1 (NOTCH1) N6-methyladenosine (m6A) modification mechanisms in HASMCs. Methods HASMCs were cultured. METTL3 was knocked down and overexpressed. Then, both METTL3 and NOTCH1 were simultaneously knocked down in HASMCs. HASMC proliferation was determined using Cell Counting Kit-8 (CCK-8). METTL3, NOTCH1, α-smooth muscle actin (α-SMA), smooth muscle protein 22-alpha (SM22α), and calponin expressions were monitored with quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. An m6A dot blot assay was used to examine the m6A modification levels. The NOTCH1 3' untranslated region (3'UTR) m6A modification was analyzed using SRAMP and RMBase v. 2.0. A methylated RNA immunoprecipitation (MeRIP) assay was used to evaluate the METTL3 overexpression effect on m6A modification of NOTCH1 messenger RNA (mRNA). A dual-luciferase assay was used to investigate the effect of METTL3 binding of the NOTCH1 mRNA m6A modification site. YTH domain family 2 (YTHDF2)-RNA immunoprecipitation (RIP) was used to detect the change in YTHDF2's ability to bind to NOTCH1 mRNA after METTL3 overexpression. Results Overexpression of METTL3 inhibited α-SMA, SM22α, calponin, and NOTCH1 expressions and promoted HASMC proliferation. Knocking down METTL3 had the opposite effect. The cointerference of the METTL3 and NOTCH1 results suggested that METTL3 regulated NOTCH1, contributing to HASMC phenotypic changes. The MeRIP assay showed that the m6A modification of NOTCH1 mRNA increased after METTL3 overexpression. The dual-luciferase assay indicated that the NOTCH1 mRNA m6A modification site and METTL3 overexpression promoted NOTCH1 mRNA degradation. YTHDF2-RIP further demonstrated that the binding ability of YTHDF2 and NOTCH1 mRNA was enhanced after METTL3 overexpression. Conclusions METTL3 regulated the phenotypic changes of HASMC by upregulating m6A modification of NOTCH1 and inhibiting NOTCH1.
Collapse
Affiliation(s)
- Jue Yang
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Miaoxian Fang
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Changjiang Yu
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhuxiao Li
- Forevergen Biosciences Center, Guangzhou, China
| | - Qiuji Wang
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chenxi Li
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jinlin Wu
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ruixin Fan
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
7
|
Wang G, Luo Y, Gao X, Liang Y, Yang F, Wu J, Fang D, Luo M. MicroRNA regulation of phenotypic transformations in vascular smooth muscle: relevance to vascular remodeling. Cell Mol Life Sci 2023; 80:144. [PMID: 37165163 PMCID: PMC11071847 DOI: 10.1007/s00018-023-04793-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/10/2023] [Accepted: 04/27/2023] [Indexed: 05/12/2023]
Abstract
Alterations in the vascular smooth muscle cells (VSMC) phenotype play a critical role in the pathogenesis of several cardiovascular diseases, including hypertension, atherosclerosis, and restenosis after angioplasty. MicroRNAs (miRNAs) are a class of endogenous noncoding RNAs (approximately 19-25 nucleotides in length) that function as regulators in various physiological and pathophysiological events. Recent studies have suggested that aberrant miRNAs' expression might underlie VSMC phenotypic transformation, appearing to regulate the phenotypic transformations of VSMCs by targeting specific genes that either participate in the maintenance of the contractile phenotype or contribute to the transformation to alternate phenotypes, and affecting atherosclerosis, hypertension, and coronary artery disease by altering VSMC proliferation, migration, differentiation, inflammation, calcification, oxidative stress, and apoptosis, suggesting an important regulatory role in vascular remodeling for maintaining vascular homeostasis. This review outlines recent progress in the discovery of miRNAs and elucidation of their mechanisms of action and functions in VSMC phenotypic regulation. Importantly, as the literature supports roles for miRNAs in modulating vascular remodeling and for maintaining vascular homeostasis, this area of research will likely provide new insights into clinical diagnosis and prognosis and ultimately facilitate the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Gang Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Longmatan District, No. 1, Section 1, Xianglin Road, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yulin Luo
- GCP Center, Affiliated Hospital (Traditional Chinese Medicine) of Southwest Medical University, Luzhou, China
| | - Xiaojun Gao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Longmatan District, No. 1, Section 1, Xianglin Road, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yu Liang
- Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Feifei Yang
- School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jianbo Wu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Longmatan District, No. 1, Section 1, Xianglin Road, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Dan Fang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Longmatan District, No. 1, Section 1, Xianglin Road, Luzhou, Sichuan, China.
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Mao Luo
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Longmatan District, No. 1, Section 1, Xianglin Road, Luzhou, Sichuan, China.
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
- Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
8
|
Liu L, Kryvokhyzha D, Rippe C, Jacob A, Borreguero-Muñoz A, Stenkula KG, Hansson O, Smith CWJ, Fisher SA, Swärd K. Myocardin regulates exon usage in smooth muscle cells through induction of splicing regulatory factors. Cell Mol Life Sci 2022; 79:459. [PMID: 35913515 PMCID: PMC9343278 DOI: 10.1007/s00018-022-04497-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 11/03/2022]
Abstract
AbstractDifferentiation of smooth muscle cells (SMCs) depends on serum response factor (SRF) and its co-activator myocardin (MYOCD). The role of MYOCD for the SMC program of gene transcription is well established. In contrast, the role of MYOCD in control of SMC-specific alternative exon usage, including exon splicing, has not been explored. In the current work we identified four splicing factors (MBNL1, RBPMS, RBPMS2, and RBFOX2) that correlate with MYOCD across human SMC tissues. Forced expression of MYOCD family members in human coronary artery SMCs in vitro upregulated expression of these splicing factors. For global profiling of transcript diversity, we performed RNA-sequencing after MYOCD transduction. We analyzed alternative transcripts with three different methods. Exon-based analysis identified 1637 features with differential exon usage. For example, usage of 3´ exons in MYLK that encode telokin increased relative to 5´ exons, as did the 17 kDa telokin to 130 kDa MYLK protein ratio. Dedicated event-based analysis identified 239 MYOCD-driven splicing events. Events involving MBNL1, MCAM, and ACTN1 were among the most prominent, and this was confirmed using variant-specific PCR analyses. In support of a role for RBPMS and RBFOX2 in MYOCD-driven splicing we found enrichment of their binding motifs around differentially spliced exons. Moreover, knockdown of either RBPMS or RBFOX2 antagonized splicing events stimulated by MYOCD, including those involving ACTN1, VCL, and MBNL1. Supporting an in vivo role of MYOCD-SRF-driven splicing, we demonstrate altered Rbpms expression and splicing in inducible and SMC-specific Srf knockout mice. We conclude that MYOCD-SRF, in part via RBPMS and RBFOX2, induce a program of differential exon usage and alternative splicing as part of the broader program of SMC differentiation.
Collapse
|
9
|
Jakubiak GK, Pawlas N, Cieślar G, Stanek A. Pathogenesis and Clinical Significance of In-Stent Restenosis in Patients with Diabetes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:11970. [PMID: 34831726 PMCID: PMC8617716 DOI: 10.3390/ijerph182211970] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus (DM) is a strong risk factor for the development of cardiovascular diseases such as coronary heart disease, cerebrovascular disease, and peripheral arterial disease (PAD). In the population of people living with DM, PAD is characterised by multi-level atherosclerotic lesions as well as greater involvement of the arteries below the knee. DM is also a factor that significantly increases the risk of lower limb amputation. Percutaneous balloon angioplasty with or without stent implantation is an important method of the treatment for atherosclerotic cardiovascular diseases, but restenosis is a factor limiting its long-term effectiveness. The pathogenesis of atherosclerosis in the course of DM differs slightly from that in the general population. In the population of people living with DM, more attention is drawn to such factors as inflammation, endothelial dysfunction, platelet dysfunction, blood rheological properties, hypercoagulability, and additional factors stimulating vascular smooth muscle cell proliferation. DM is a risk factor for restenosis. The purpose of this paper is to provide a review of the literature and to present the most important information on the current state of knowledge on mechanisms and the clinical significance of restenosis and in-stent restenosis in patients with DM, especially in association with the endovascular treatment of PAD. The role of such processes as inflammation, neointimal hyperplasia and neoatherosclerosis, allergy, resistance to antimitotic drugs used for coating stents and balloons, genetic factors, and technical and mechanical factors are discussed. The information on restenosis collected in this publication may be helpful in planning further research in this field, which may contribute to the formulation of more and more precise recommendations for the clinical practice.
Collapse
Affiliation(s)
- Grzegorz K. Jakubiak
- Department and Clinic of Internal Medicine, Angiology, and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 St., 41-902 Bytom, Poland; (G.K.J.); (G.C.)
| | - Natalia Pawlas
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 38 St., 41-800 Zabrze, Poland;
| | - Grzegorz Cieślar
- Department and Clinic of Internal Medicine, Angiology, and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 St., 41-902 Bytom, Poland; (G.K.J.); (G.C.)
| | - Agata Stanek
- Department and Clinic of Internal Medicine, Angiology, and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 St., 41-902 Bytom, Poland; (G.K.J.); (G.C.)
| |
Collapse
|