1
|
Rehman MU, Sehar N, Rasool I, Aldossari RM, Wani AB, Rashid SM, Wali AF, Ali A, Arafah A, Khan A. Glymphatic pathway: An emerging perspective in the pathophysiology of neurodegenerative diseases. Int J Geriatr Psychiatry 2024; 39:e6104. [PMID: 38877354 DOI: 10.1002/gps.6104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/23/2024] [Indexed: 06/16/2024]
Abstract
The central nervous system (CNS) is widely recognized as the only organ system without lymphatic capillaries to promote the removal of interstitial metabolic by-products. Thus, the newly identified glymphatic system which provides a pseudolymphatic activity in the nervous system has been focus of latest research in neurosciences. Also, findings reported that, sleep stimulates the elimination actions of glymphatic system and is linked to normal brain homeostatis. The CNS is cleared of potentially hazardous compounds via the glymphatic system, particularly during sleep. Any age-related alterations in brain functioning and pathophysiology of various neurodegenerative illnesses indicates the disturbance of the brain's glymphatic system. In this context, β-amyloid as well as tau leaves the CNS through the glymphatic system, it's functioning and CSF discharge markedly altered in elderly brains as per many findings. Thus, glymphatic failure may have a potential mechanism which may be therapeutically targetable in several neurodegenerative and age-associated cognitive diseases. Therefore, there is an urge to focus for more research into the connection among glymphatic system and several potential brain related diseases. Here, in our current review paper, we reviewed current research on the glymphatic system's involvement in a number of prevalent neurodegenerative and neuropsychiatric diseases and, we also discussed several therapeutic approaches, diet and life style modifications which might be used to acquire a more thorough performance and purpose of the glymphatic system to decipher novel prospects for clinical applicability for the management of these diseases.
Collapse
Affiliation(s)
- Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nouroz Sehar
- Centre for Translational and Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, India
| | - Iyman Rasool
- Department of Pathology, Government Medical College (GMC-Srinagar), Srinagar, Jammu and Kashmir, India
| | - Rana M Aldossari
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin AbdulAziz University, Al Kharj, Saudi Arabia
| | - Amir Bashir Wani
- Division of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Srinagar, Jammu and Kashmir, India
| | - Shahzada Mudasir Rashid
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Alusteng, Shuhama, Srinagar, Jammu and Kashmir, India
| | - Adil Farooq Wali
- Department of Pharmaceutical Chemistry, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Aarif Ali
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Alusteng, Shuhama, Srinagar, Jammu and Kashmir, India
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Andleeb Khan
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
2
|
Tsurugizawa T, Kumamoto T, Yoshioka Y. Micro-magnetic resonance imaging of ex vivo mouse embryos with potato starch suspension. STAR Protoc 2023; 4:102483. [PMID: 37516974 PMCID: PMC10407275 DOI: 10.1016/j.xpro.2023.102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
Potato starch suspension (PSS) holds promise as a solution to issues, such as air bubbles and specimen motion, associated with micro-magnetic resonance imaging (micro-MRI) of ex vivo embryos. Here, we present a protocol for using PSS when scanning specimens with micro-MRI. We describe steps for preparing samples and potato starch with phosphate-buffered saline. We then detail steps for specimen immersion and micro-MRI scanning. This protocol will enable micro-MRI of not only embryos but also other specimens, such as insects. For complete details on the use and execution of this protocol, please refer to Tsurugizawa et al.1.
Collapse
Affiliation(s)
- Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8568, Japan; Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba 305-8573, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; Center for Information and Neural Networks (CiNet), Osaka University and National Institute of Information and Communications Technology (NICT), Suita 565-0871, Japan.
| | - Takuma Kumamoto
- Developmental Neuroscience Project, Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yoshichika Yoshioka
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; Center for Information and Neural Networks (CiNet), Osaka University and National Institute of Information and Communications Technology (NICT), Suita 565-0871, Japan.
| |
Collapse
|
3
|
Bi W, Lei T, Cai S, Zhang X, Yang Y, Xiao Z, Wang L, Du H. Potential of astrocytes in targeting therapy for Alzheimer’s disease. Int Immunopharmacol 2022; 113:109368. [DOI: 10.1016/j.intimp.2022.109368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/06/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
4
|
Tsurugizawa T, Kumamoto T, Yoshioka Y. Utilization of potato starch suspension for MR-microimaging in ex vivo mouse embryos. iScience 2022; 25:105694. [PMID: 36567713 PMCID: PMC9768372 DOI: 10.1016/j.isci.2022.105694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/31/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Magnetic resonance (MR) microimaging of the mouse embryo is a promising tool to noninvasively investigate the microstructure of the brain of a developing mouse. The proton-free fluid is used for the liquid surrounding the specimen in MR microimaging, but the potential issue of image quality remains due to the air bubbles on the specimen and the retained water proton in the curvature of the embryo. Furthermore, the specimen may move during the scanning, resulting in motion artifact. Here, we developed the new concept of the ex vivo microimaging protocol with the robust method using the potato starch-containing biological polymers. Potato starch suspension with PBS significantly reduced T1 and T2 signal intensity of the suspension and strongly suppressed the motion of the embryo. Furthermore, potato starch-PBS suspension is stable for long-time scanning at room temperature. These results indicate the utility of potato starch suspension for MR microimaging in mouse embryos.
Collapse
Affiliation(s)
- Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8568, Japan,Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba 305-8573, Japan,Jikei University School of Medicine, 3-25-8 Nishishinbashi, Tokyo 105-8461, Japan,Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan,Center for Information and Neural Networks (CiNet), Osaka University and National Institute of Information and Communications Technology (NICT), Suita 565-0871, Japan,Corresponding author
| | - Takuma Kumamoto
- Developmental Neuroscience Project, Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yoshichika Yoshioka
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan,Center for Information and Neural Networks (CiNet), Osaka University and National Institute of Information and Communications Technology (NICT), Suita 565-0871, Japan,Corresponding author
| |
Collapse
|
5
|
Gu S, Li Y, Jiang Y, Huang JH, Wang F. Glymphatic Dysfunction Induced Oxidative Stress and Neuro-Inflammation in Major Depression Disorders. Antioxidants (Basel) 2022; 11:2296. [PMID: 36421482 PMCID: PMC9687220 DOI: 10.3390/antiox11112296] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 07/30/2023] Open
Abstract
Major Depression disorder (MDD) is a potentially life-threatening mental illness, however, many patients have a poor response to current treatments. Recent studies have suggested that stress- or trauma-induced oxidative stress and inflammation could be important factors involved in the development of MDD, but the mechanisms remain unclear. We showed that the glymphatic system is a recently discovered structure in the brain that may be involved in the clearance of large molecular and cell debris in extracellular space. In addition, the glymphatic system can help with the removal of reactive oxygen species (ROS) and cytokines such as IL-1β and HIF-1α. Glymphatic impairment can lead to ROS accumulation in the microenvironment, inducing cellular injury signaling and activating NLRP3 in microglia to induce inflammation and, thus, many brain diseases, including psychiatric disorders. Therefore, trauma-induced glymphatic impairment could induce oxidative stress and inflammation, and thus MDD. This paper will review recent advances with regard to stress-induced glymphatic system impairment and ROS-mediated inflammation in MDD.
Collapse
Affiliation(s)
- Simeng Gu
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
- Department of Psychology, Medical School, Jiangsu University, Zhenjiang 210023, China
| | - Yumeng Li
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
- Department of Psychology, Medical School, Jiangsu University, Zhenjiang 210023, China
| | - Yao Jiang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Jason H. Huang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 79409, USA
- Department of Surgery, College of Medicine, Texas A & M University, Temple, TX 79409, USA
| | - Fushun Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| |
Collapse
|
6
|
You S, Su X, Ying J, Li S, Qu Y, Mu D. Research Progress on the Role of RNA m6A Modification in Glial Cells in the Regulation of Neurological Diseases. Biomolecules 2022; 12:biom12081158. [PMID: 36009052 PMCID: PMC9405963 DOI: 10.3390/biom12081158] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Glial cells are the most abundant and widely distributed cells that maintain cerebral homeostasis in the central nervous system. They mainly include microglia, astrocytes, and the oligodendrocyte lineage cells. Moreover, glial cells may induce pathological changes, such as inflammatory responses, demyelination, and disruption of the blood–brain barrier, to regulate the occurrence and development of neurological diseases through various molecular mechanisms. Furthermore, RNA m6A modifications are involved in various pathological processes associated with glial cells. In this review, the roles of glial cells in physiological and pathological states, as well as advances in understanding the mechanisms by which glial cells regulate neurological diseases under RNA m6A modification, are summarized, hoping to provide new perspectives on the deeper mechanisms and potential therapeutic targets for neurological diseases.
Collapse
Affiliation(s)
- Siyi You
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaojuan Su
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610041, China
| | - Junjie Ying
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610041, China
| | - Shiping Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610041, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610041, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
7
|
Tsurugizawa T. Translational Magnetic Resonance Imaging in Autism Spectrum Disorder From the Mouse Model to Human. Front Neurosci 2022; 16:872036. [PMID: 35585926 PMCID: PMC9108701 DOI: 10.3389/fnins.2022.872036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/30/2022] [Indexed: 11/26/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous syndrome characterized by behavioral features such as impaired social communication, repetitive behavior patterns, and a lack of interest in novel objects. A multimodal neuroimaging using magnetic resonance imaging (MRI) in patients with ASD shows highly heterogeneous abnormalities in function and structure in the brain associated with specific behavioral features. To elucidate the mechanism of ASD, several ASD mouse models have been generated, by focusing on some of the ASD risk genes. A specific behavioral feature of an ASD mouse model is caused by an altered gene expression or a modification of a gene product. Using these mouse models, a high field preclinical MRI enables us to non-invasively investigate the neuronal mechanism of the altered brain function associated with the behavior and ASD risk genes. Thus, MRI is a promising translational approach to bridge the gap between mice and humans. This review presents the evidence for multimodal MRI, including functional MRI (fMRI), diffusion tensor imaging (DTI), and volumetric analysis, in ASD mouse models and in patients with ASD and discusses the future directions for the translational study of ASD.
Collapse
Affiliation(s)
- Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Faculty of Engineering, University of Tsukuba, Tsukuba, Japan
- *Correspondence: Tomokazu Tsurugizawa,
| |
Collapse
|
8
|
Rofeal M, Abdelmalek F, Steinbüchel A. Naturally-Sourced Antibacterial Polymeric Nanomaterials with Special Reference to Modified Polymer Variants. Int J Mol Sci 2022; 23:4101. [PMID: 35456918 PMCID: PMC9030380 DOI: 10.3390/ijms23084101] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
Despite the recent advancements in treating bacterial infections, antibiotic resistance (AR) is still an emerging issue. However, polymeric nanocarriers have offered unconventional solutions owing to their capability of exposing more functional groups, high encapsulation efficiency (EE) and having sustained delivery. Natural polymeric nanomaterials (NMs) are contemplated one of the most powerful strategies in drug delivery (DD) in terms of their safety, biodegradability with almost no side effects. Every nanostructure is tailored to enhance the system functionality. For example, cost-effective copper NPs could be generated in situ in cellulose sheets, demonstrating powerful antibacterial prospects for food safety sector. Dendrimers also have the capacity for peptide encapsulation, protecting them from proteolytic digestion for prolonged half life span. On the other hand, the demerits of naturally sourced polymers still stand against their capacities in DD. Hence, Post-synthetic modification of natural polymers could play a provital role in yielding new hybrids while retaining their biodegradability, which could be suitable for building novel super structures for DD platforms. This is the first review presenting the contribution of natural polymers in the fabrication of eight polymeric NMs including particulate nanodelivery and nanofabrics with antibacterial and antibiofilm prospects, referring to modified polymer derivatives to explore their full potential for obtaining sustainable DD products.
Collapse
Affiliation(s)
- Marian Rofeal
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)—International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90–924 Lodz, Poland;
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21521, Egypt
| | - Fady Abdelmalek
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)—International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90–924 Lodz, Poland;
| | - Alexander Steinbüchel
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)—International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90–924 Lodz, Poland;
| |
Collapse
|