1
|
Zerin F, Hoque N, Menon SN, Ezewudo E, Simon NP, Sooreni S, Shahid MS, Jones M, Pandey A, Gökçe Y, Rahman T, Hasan R. Nanomolar therapeutic concentrations of statins rapidly induce cerebral artery vasoconstriction by stimulating L-type calcium channels. Biochem Pharmacol 2025:116970. [PMID: 40320051 DOI: 10.1016/j.bcp.2025.116970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/03/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
All commonly prescribed statins have been reported to cause reversible memory loss within weeks of therapy, though the exact molecular mechanism remains unknown. However, whether therapeutic concentrations of statins can directly regulate the contractility of resistance cerebral arteries that control cerebrovascular perfusion remains unexplored. Here, we examined the acute vascular effects of statins on rat cerebral arteries and the underlying molecular mechanisms. Our pressure myography data demonstrate that, at therapeutically-relevant nanomolar concentrations, statins produced a robust and rapid vasoconstriction, appearing within 2-3 min of drug application. Interestingly, such vasoconstriction was largely absent in female rat cerebral arteries. Endothelial denudation or mevalonate supplementation did not alter statin-induced vasoconstriction, suggesting an endothelium- and cholesterol-independent mechanism. In contrast, such vasoconstriction was abolished upon removal of extracellular Ca2+, pharmacological blockade of the smooth muscle cell voltage-gated Ca2+ channel, CaV1.2, or siRNA knockdown of CaV1.2 - all of which reduced [Ca2+]i, indicating that Ca2+ entry through CaV1.2 plays a critical role in cerebral artery vasoconstriction. Arterial biotinylation revealed that acute statin exposure did not alter the surface expression, distribution, or function of CaV1.2 channels. Altogether, our data unveil an unexpected role of statins in rapidly inducing constriction of resistance cerebral arteries by directly stimulating CaV1.2 in smooth muscle cells. These findings offer a plausible explanation for statin-associated reversible memory impairment, its mitigation by calcium channel blockers, and why such effects may not be observed in all subjects, particularly those concurrently taking antihypertensive agents.
Collapse
Affiliation(s)
- Farzana Zerin
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Nazia Hoque
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA; Department of Pharmacy, East West University, Dhaka, Bangladesh
| | - Sreelakshmi N Menon
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Emmanuella Ezewudo
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Nimi P Simon
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Samira Sooreni
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Mashmum S Shahid
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Morgan Jones
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Ajay Pandey
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA; Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Yasin Gökçe
- Department of Biophysics, School of Medicine, Harran University, Sanlıurfa 63300, Turkey
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, UK
| | - Raquibul Hasan
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA.
| |
Collapse
|
2
|
Kloza M, Krzyżewska A, Kozłowska H, Budziak S, Baranowska-Kuczko M. Empagliflozin Plays Vasoprotective Role in Spontaneously Hypertensive Rats via Activation of the SIRT1/AMPK Pathway. Cells 2025; 14:507. [PMID: 40214461 PMCID: PMC11987869 DOI: 10.3390/cells14070507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
Empagliflozin (EMPA), a sodium-glucose co-transporter 2 (SGLT2) inhibitor, prevents endothelial dysfunction, but its effects on vascular tone in hypertension remain unclear. This study investigated whether EMPA modulates vasomotor tone via sirtuin 1 (SIRT1) and AMP-activated protein kinase (AMPK) pathways in spontaneously hypertensive rats (SHR) and controls (Wistar Kyoto rats, WKY). Functional (wire myography, organ bath) and biochemical (Western blot) studies were conducted on the third-order of the superior mesenteric arteries (sMAs) and/or aortas. EMPA induced concentration-dependent relaxation of preconstricted sMAs in both groups. In SHR, EMPA enhanced acetylcholine (Ach)-induced relaxation in sMAs and aortas and reduced constriction induced by phenylephrine (Phe) and U46619 in sMAs. The SIRT1 inhibitor (EX527) abolished EMPA's effects on Ach-mediated relaxation and U46619-induced vasoconstriction, while AMPK inhibition reduced Ach-mediated relaxation and Phe-induced vasoconstriction. SHR showed increased SGLT2 and SIRT1 expression and decreased pAMPK/AMPK levels in sMAs. In conclusion, EMPA might exert vasoprotective effects in hypertension by enhancing endothelium-dependent relaxation and reducing constriction via AMPK/SIRT1 pathways. These properties could improve vascular health in patients with hypertension and related conditions. Further studies are needed to explore new indications for SGLT2 inhibitors.
Collapse
Affiliation(s)
- Monika Kloza
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222 Białystok, Poland; (A.K.); (H.K.); (S.B.)
| | - Anna Krzyżewska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222 Białystok, Poland; (A.K.); (H.K.); (S.B.)
| | - Hanna Kozłowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222 Białystok, Poland; (A.K.); (H.K.); (S.B.)
| | - Sandra Budziak
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222 Białystok, Poland; (A.K.); (H.K.); (S.B.)
| | - Marta Baranowska-Kuczko
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222 Białystok, Poland; (A.K.); (H.K.); (S.B.)
- Department of Clinical Pharmacy, Medical University of Białystok, 15-222 Białystok, Poland
| |
Collapse
|
3
|
Forrester EA, Benítez-Angeles M, Redford KE, Rosenbaum T, Abbott GW, Barrese V, Dora K, Albert AP, Dannesboe J, Salles-Crawley I, Jepps TA, Greenwood IA. Crucial role for sensory nerves and Na/H exchanger inhibition in dapagliflozin- and empagliflozin-induced arterial relaxation. Cardiovasc Res 2024; 120:1811-1824. [PMID: 39056245 PMCID: PMC11587556 DOI: 10.1093/cvr/cvae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/06/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
AIMS Sodium/glucose transporter 2 (SGLT2 or SLC5A2) inhibitors lower blood glucose and are also approved treatments for heart failure independent of raised glucose. Various studies have showed that SGLT2 inhibitors relax arteries, but the underlying mechanisms are poorly understood and responses variable across arterial beds. We speculated that SGLT2 inhibitor-mediated arterial relaxation is dependent upon calcitonin gene-related peptide (CGRP) released from sensory nerves independent of glucose transport. METHODS AND RESULTS The functional effects of SGLT1 and 2 inhibitors (mizagliflozin, dapagliflozin, and empagliflozin) and the sodium/hydrogen exchanger 1 (NHE1) blocker cariporide were determined on pre-contracted resistance arteries (mesenteric and cardiac septal arteries) as well as main renal conduit arteries from male Wistar rats using wire myography. SGLT2, CGRP, TRPV1, and NHE1 expression was determined by western blot and immunohistochemistry. Kv7.4/5/KCNE4 and TRPV1 currents were measured in the presence and absence of dapagliflozin and empagliflozin. All SGLT inhibitors (1-100 µM) and cariporide (30 µM) relaxed mesenteric arteries but had negligible effect on renal or septal arteries. Immunohistochemistry with TRPV1 and CGRP antibodies revealed a dense innervation of sensory nerves in mesenteric arteries that were absent in renal and septal arteries. Consistent with a greater sensory nerve component, the TRPV1 agonist capsaicin relaxed mesenteric arteries more effectively than renal or septal arteries. In mesenteric arteries, relaxations to dapagliflozin, empagliflozin, and cariporide were attenuated by the CGRP receptor antagonist BIBN-4096, depletion of sensory nerves with capsaicin, and blockade of TRPV1 or Kv7 channels. Neither dapagliflozin nor empagliflozin activated heterologously expressed TRPV1 channels or Kv7 channels directly. Sensory nerves also expressed NHE1 but not SGLT2 and cariporide pre-application as well as knockdown of NHE1 by translation stop morpholinos prevented the relaxant response to SGLT2 inhibitors. CONCLUSION SGLT2 inhibitors relax mesenteric arteries by promoting the release of CGRP from sensory nerves in a NHE1-dependent manner.
Collapse
Affiliation(s)
- Elizabeth A Forrester
- Vascular Biology Section, Molecular & Clinical Sciences Research Institute, St George’s University, Cranmer Terrace, London SW17 ORE, UK
| | - Miguel Benítez-Angeles
- I Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Kaitlyn E Redford
- Bioelectricity Lab, Department of Physiology & Biophysics, School of Medicine, University of California, Irvine, USA
| | - Tamara Rosenbaum
- I Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Geoffrey W Abbott
- Bioelectricity Lab, Department of Physiology & Biophysics, School of Medicine, University of California, Irvine, USA
| | - Vincenzo Barrese
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Kim Dora
- Department of Pharmacology, Oxford University, Oxford, UK
| | - Anthony P Albert
- Vascular Biology Section, Molecular & Clinical Sciences Research Institute, St George’s University, Cranmer Terrace, London SW17 ORE, UK
| | - Johs Dannesboe
- Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Isabelle Salles-Crawley
- Vascular Biology Section, Molecular & Clinical Sciences Research Institute, St George’s University, Cranmer Terrace, London SW17 ORE, UK
| | - Thomas A Jepps
- Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Iain A Greenwood
- Vascular Biology Section, Molecular & Clinical Sciences Research Institute, St George’s University, Cranmer Terrace, London SW17 ORE, UK
| |
Collapse
|
4
|
Kawada T, Yamamoto H, Fukumitsu M, Nishikawa T, Matsushita H, Yoshida Y, Sato K, Morita H, Alexander J, Saku K. Acute effects of empagliflozin on open-loop baroreflex function and urine output in streptozotocin-induced type 1 diabetic rats. J Physiol Sci 2024; 74:48. [PMID: 39342112 PMCID: PMC11438138 DOI: 10.1186/s12576-024-00938-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024]
Abstract
Although sympathetic suppression is considered one of the mechanisms for cardioprotection afforded by sodium-glucose cotransporter 2 (SGLT2) inhibitors, whether SGLT2 inhibition acutely modifies sympathetic arterial pressure (AP) regulation remains unclear. We examined the acute effect of an SGLT2 inhibitor, empagliflozin (10 mg/kg), on open-loop baroreflex static characteristics in streptozotocin (STZ)-induced type 1 diabetic and control (CNT) rats (n = 9 each). Empagliflozin significantly increased urine flow [CNT: 25.5 (21.7-31.2) vs. 55.9 (51.0-64.5), STZ: 83.4 (53.7-91.7) vs. 121.2 (57.0-136.0) μL·min-1·kg-1, median (1st-3rd quartiles), P < 0.001 for empagliflozin and STZ]. Empagliflozin decreased the minimum sympathetic nerve activity (SNA) [CNT: 15.7 (6.8-18.4) vs. 10.5 (2.9-19.0), STZ: 36.9 (25.7-54.9) vs. 32.8 (15.1-37.5) %, P = 0.021 for empagliflozin and P = 0.003 for STZ], but did not significantly affect the peripheral arc characteristics assessed by the SNA-AP relationship. Despite the significant increase in urine flow and changes in several baroreflex parameters, empagliflozin preserved the overall sympathetic AP regulation in STZ-induced diabetic rats. The lack of a significant change in the peripheral arc may minimize reflex sympathetic activation, thereby enhancing a cardioprotective benefit of empagliflozin.
Collapse
Affiliation(s)
- Toru Kawada
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan.
| | - Hiromi Yamamoto
- Department of Cardiovascular Medicine, Kurashiki Central Hospital, Ohara HealthCare Foundation, Okayama, 710-8602, Japan
| | - Masafumi Fukumitsu
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Takuya Nishikawa
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Hiroki Matsushita
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Yuki Yoshida
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Kei Sato
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Hidetaka Morita
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Joe Alexander
- Medical and Health Informatics Laboratories, NTT Research, Inc, Sunnyvale, CA, 94085, USA
| | - Keita Saku
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
- Bio Digital Twin Center, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| |
Collapse
|
5
|
Kong Q, Qian LL, Zhang L, Liu HH, Yang F, Zhang XL, Wang C, Zhao XX, Li KL, Wang RX. Empagliflozin Induces Vascular Relaxation in Rat Coronary Artery Due to Activation of BK Channels. Diabetes Metab Syndr Obes 2024; 17:247-257. [PMID: 38269338 PMCID: PMC10807270 DOI: 10.2147/dmso.s419125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024] Open
Abstract
Purpose The aim of this study was to investigate the effects and mechanisms of SGLT2 inhibitor empagliflozin on diabetic coronary function. Methods A rat diabetic model was established by injection of streptozotocin. Rats in the treated group were administered empagliflozin by gavage and rat coronary vascular tensions were measured after eight weeks. Large conductance calcium activated K+ channel currents were recorded using a patch clamp technique, while human coronary artery smooth muscle cells were used to explore the underlying mechanisms. Results After incubation with empagliflozin (10, 30, 100, 300, 1000 μmol/L), the Δ relaxation % of rat coronary arteries were 2.459 ± 1.304, 3.251 ± 1.119, 6.946 ± 3.407, 28.36 ± 11.47, 86.90 ± 3.868, respectively. Without and with empagliflozin in the bath solution, BK channel opening probabilities at a membrane potential of +60 mV were 0.0458 ± 0.0517 and 0.3413 ± 0.2047, respectively (p < 0.05, n = 4 cells). After incubation with iberiotoxin, the Δ tensions of rat coronary arteries in the control (Ctrl), untreated (DM), low empagliflozin (10 mg/kg/d)-treated (DM+L-EMPA) and high empagliflozin (30mg/kg/d)-treated (DM+H-EMPA) group were 103.20 ± 5.85, 40.37 ± 22.12, 99.47 ± 28.51, 78.06 ± 40.98, respectively (p < 0.01 vs Ctrl, n = 3-7; p < 0.001 vs DM+L-EMPA, n = 5-7). Empagliflozin restored high glucose-induced downregulation of Sirt1, Nrf2, and BK-β1, while the effect of empagliflozin disappeared in the presence of EX-527, a Sirt1 selective inhibitor. Conclusion Empagliflozin has a vasodilation effect on the coronary arteries in a concentration-dependent manner and can activate BK channels via the Sirt1-Nrf2 mechanism.
Collapse
Affiliation(s)
- Qi Kong
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, People’s Republic of China
| | - Ling-ling Qian
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, People’s Republic of China
| | - Lei Zhang
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, People’s Republic of China
| | - Huan-huan Liu
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, People’s Republic of China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, People’s Republic of China
| | - Fan Yang
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, People’s Republic of China
| | - Xiao-lu Zhang
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, People’s Republic of China
| | - Chao Wang
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, People’s Republic of China
| | - Xiao-xi Zhao
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, People’s Republic of China
| | - Ku-lin Li
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, People’s Republic of China
| | - Ru-xing Wang
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, People’s Republic of China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, People’s Republic of China
| |
Collapse
|
6
|
Forrester EA, Benítez-Angeles M, Redford KE, Rosenbaum T, Abbott GW, Barrese V, Dora K, Albert AP, Dannesboe J, Salles-Crawley I, Jepps TA, Greenwood IA. Crucial role for Sodium Hydrogen Exchangers in SGLT2 inhibitor-induced arterial relaxations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570303. [PMID: 38116028 PMCID: PMC10729745 DOI: 10.1101/2023.12.05.570303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Introduction Sodium dependent glucose transporter 2 (SGLT2 or SLC5A2) inhibitors effectively lower blood glucose and are also approved treatments for heart failure independent of raised glucose. One component of the cardioprotective effect is reduced cardiac afterload but the mechanisms underlying peripheral relaxation are ill defined and variable. We speculated that SGLT2 inhibitors promoted arterial relaxation via the release of the potent vasodilator calcitonin gene-related peptide (CGRP) from sensory nerves independent of glucose transport. Experimental approach The functional effects of SGLT2 inhibitors (dapagliflozin, empagliflozin, ertugliflozin) and the sodium/hydrogen exchanger 1 (NHE1) blocker cariporide were determined on pre-contracted mesenteric and renal arteries from male Wistar rats using Wire-Myography. SGLT2, NHE1, CGRP and TRPV1 expression in both arteries was determined by Western blot and immunohistochemistry. Kv7.4/5/KCNE4 and TRPV1 currents were measured in the presence and absence of dapagliflozin and empagliflozin. Results All SGLT2 inhibitors produced a concentration dependent relaxation (1µM-100µM) of mesenteric arteries that was considerably greater than in renal arteries. Cariporide relaxed mesenteric arteries but not renal arteries. Immunohistochemistry with TRPV1 and CGRP antibodies revealed a dense innervation of sensory nerves in mesenteric arteries that was absent in renal arteries. Consistent with a greater sensory nerve component, the TRPV1 agonist capsaicin produced significantly greater relaxations in mesenteric arteries compared to renal arteries. Relaxations to dapagliflozin, empagliflozin and cariporide were attenuated by incubation with the CGRP receptor antagonist BIBN-4096, the Kv7 blocker linopirdine and the TRPV1 antagonist AMG-517 as well as by depletion of neuronal CGRP. Neither dapagliflozin nor empagliflozin directly activated heterologously expressed TRPV1 channels or Kv7 channels. Strikingly, only NHE1 colocalised with TRPV1 in sensory nerves, and cariporide pre-application prevented the relaxant response to SGLT2 inhibitors. Conclusions SGLT2 inhibitors relax mesenteric arteries by a novel mechanism involving the release of CGRP from sensory nerves following inhibition of the Na + /H + exchanger.
Collapse
|
7
|
Zhuang W, Mun SY, Park M, Jeong J, Park H, Na S, Lee SJ, Jung WK, Choi IW, Li H, Park WS. Lurasidone blocks the voltage-gated potassium channels of coronary arterial smooth muscle cells. Eur J Pharmacol 2023; 957:176005. [PMID: 37611842 DOI: 10.1016/j.ejphar.2023.176005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Lurasidone is a second-generation antipsychotic drug used to treat schizophrenia, mania, and bipolar disorder. The drug is an antagonist of the 5-HT2A and D2 receptors. No effect of lurasidone on the voltage-gated K+ (Kv) channels has yet been identified. Here, we show that lurasidone inhibits the vascular Kv channels of rabbit coronary arterial smooth muscle cells in a dose-dependent manner with an IC50 of 1.88 ± 0.21 μM and a Hill coefficient of 0.98 ± 0.09. Although lurasidone (3 μM) did not affect the activation kinetics, the drug negatively shifted the inactivation curve, suggesting that the drug interacted with the voltage sensors of Kv channels. Application of 1 or 2 Hz train steps in the presence of lurasidone significantly increased Kv current inhibition. The recovery time after channel inactivation increased in the presence of lurasidone. These results suggest that the inhibitory action of lurasidone is use (state)-dependent. Pretreatment with a Kv 1.5 subtype inhibitor effectively reduced the inhibitory effect of lurasidone. However, the inhibitory effect on Kv channels did not markedly change after pretreatment with a Kv 2.1 or a Kv7 subtype inhibitor. In summary, lurasidone inhibits vascular Kv channels (primarily the Kv1.5 subtype) in a concentration- and use (state)-dependent manner by shifting the steady-state inactivation curve.
Collapse
Affiliation(s)
- Wenwen Zhuang
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Seo-Yeong Mun
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Minju Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Junsu Jeong
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Hongzoo Park
- Institute of Medical Sciences, Department of Urology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Sunghun Na
- Institute of Medical Sciences, Department of Obstetrics and Gynecology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Se Jin Lee
- Institute of Medical Sciences, Department of Obstetrics and Gynecology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, 48513, South Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan, 48516, South Korea
| | - Hongliang Li
- Institute of Translational Medicine, Medical College, Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment for Senile Diseases, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Won Sun Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea.
| |
Collapse
|
8
|
Neutel CHG, Wesley CD, Van Praet M, Civati C, Roth L, De Meyer GRY, Martinet W, Guns PJ. Empagliflozin decreases ageing-associated arterial stiffening and vascular fibrosis under normoglycemic conditions. Vascul Pharmacol 2023; 152:107212. [PMID: 37619798 DOI: 10.1016/j.vph.2023.107212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Arterial stiffness is a hallmark of vascular ageing and results in increased blood flow pulsatility to the periphery, damaging end-organs such as the heart, kidneys and brain. Treating or "reversing" arterial stiffness has therefore become a central target in the field of vascular ageing. SGLT2 inhibitors, initially developed in the context of type 2 diabetes mellitus, have become a cornerstone of heart failure treatment. Additionally, effects on the vasculature have been reported. Here, we demonstrate that treatment with the SGLT2 inhibitor empagliflozin (7 weeks, 15 mg/kg/day) decreased ageing-induced arterial stiffness of the aorta in old mice with normal blood glucose levels. However, no universal mechanism was identified. While empagliflozin reduced the ageing-associated increase in collagen type I in the medial layer of the abdominal infrarenal aorta and decreased medial TGF-β deposition, this was not observed in the thoracic descending aorta. Moreover, empagliflozin was not able to prevent elastin fragmentation. In conclusion, empagliflozin decreased arterial stiffness in aged mice, indicating that SGLT2 inhibition could be a valuable strategy in mitigating vascular ageing. Further research is warranted to unravel the underlying, possibly region-specific, mechanisms.
Collapse
Affiliation(s)
- Cédric H G Neutel
- Laboratory of Physiopharmacology, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium.
| | - Callan D Wesley
- Laboratory of Physiopharmacology, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| | - Melissa Van Praet
- Laboratory of Physiopharmacology, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| | - Celine Civati
- Laboratory of Physiopharmacology, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| | - Lynn Roth
- Laboratory of Physiopharmacology, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| |
Collapse
|
9
|
Kawada T, Li M, Nishiura A, Yoshida Y, Yokota S, Matsushita H, Fukumitsu M, Uemura K, Alexander J, Saku K. Acute effects of empagliflozin on open-loop baroreflex function and urinary glucose excretion in rats with chronic myocardial infarction. J Physiol Sci 2023; 73:20. [PMID: 37704939 PMCID: PMC10717373 DOI: 10.1186/s12576-023-00877-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors have exerted cardioprotective effects in clinical trials, but underlying mechanisms are not fully understood. As mitigating sympathetic overactivity is of major clinical concern in the mechanisms of heart failure treatments, we examined the effects of modulation of glucose handling on baroreflex-mediated sympathetic nerve activity and arterial pressure regulations in rats with chronic myocardial infarction (n = 9). Repeated 11-min step input sequences were used for an open-loop analysis of the carotid sinus baroreflex. An SGLT2 inhibitor, empagliflozin, was intravenously administered (10 mg/kg) after the second sequence. Neither the baroreflex neural nor peripheral arc significantly changed during the last observation period (seventh and eighth sequences) compared with the baseline period although urinary glucose excretion increased from near 0 (0.0089 ± 0.0011 mg min-1 kg-1) to 1.91 ± 0.25 mg min-1 kg-1. Hence, empagliflozin does not acutely modulate the baroreflex regulations of sympathetic nerve activity and arterial pressure in this rat model of chronic myocardial infarction.
Collapse
Affiliation(s)
- Toru Kawada
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan.
| | - Meihua Li
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Akitsugu Nishiura
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Yuki Yoshida
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Shohei Yokota
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Hiroki Matsushita
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Masafumi Fukumitsu
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Kazunori Uemura
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Joe Alexander
- Medical and Health Informatics, NTT Research, Inc, Sunnyvale, CA, 94085, USA
| | - Keita Saku
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| |
Collapse
|
10
|
Menon SN, Zerin F, Ezewudo E, Simon NP, Menon SN, Daniel ML, Green AJ, Pandey A, Mackay CE, Hafez S, Moniri NH, Hasan R. Neflamapimod inhibits endothelial cell activation, adhesion molecule expression, leukocyte attachment and vascular inflammation by inhibiting p38 MAPKα and NF-κB signaling. Biochem Pharmacol 2023:115683. [PMID: 37429422 DOI: 10.1016/j.bcp.2023.115683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Neflamapimod, a selective inhibitor of the alpha isoform of p38 mitogen-activated protein kinase (MAPKα), was investigated for its potential to inhibit lipopolysaccharide (LPS)-induced activation of endothelial cells (ECs), adhesion molecule induction, and subsequent leukocyte attachment to EC monolayers. These events are known to contribute to vascular inflammation and cardiovascular dysfunction. Our results demonstrate that LPS treatment of cultured ECs and rats leads to significant upregulation of adhesion molecules, both in vitro and in vivo, which can be effectively inhibited by Neflamapimod treatment. Western blotting data further reveals that Neflamapimod inhibits LPS-induced phosphorylation of p38 MAPKα and the activation of NF-κB signaling in ECs. Additionally, leukocyte adhesion assays demonstrate a substantial reduction in leukocyte attachment to cultured ECs and the aorta lumen of rats treated with Neflamapimod. Consistent with vascular inflammation, LPS-treated rat arteries exhibit significantly diminished vasodilation response to acetylcholine, however, arteries from rats treated with Neflamapimod maintain their vasodilation capacity, demonstrating its ability to limit LPS-induced vascular inflammation. Overall, our data demonstrate that Neflamapimod effectively inhibits endothelium activation, adhesion molecule expression, and leukocyte attachment, thereby reducing vascular inflammation.
Collapse
Affiliation(s)
- Sreelakshmi N Menon
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Farzana Zerin
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Emmanuella Ezewudo
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Nimi P Simon
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Sreeranjini N Menon
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Morgan L Daniel
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Andrea J Green
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Ajay Pandey
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | | | - Sherif Hafez
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Nader H Moniri
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Raquibul Hasan
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; Department of Biomedical Sciences, School of Medicine, Mercer University, Macon, GA, USA.
| |
Collapse
|
11
|
Sato T, Kouzu H, Yano T, Sakuma I, Furuhashi M, Tohse N. Potential favorable action of sodium-glucose cotransporter-2 inhibitors on sudden cardiac death: a brief overview. Front Cardiovasc Med 2023; 10:1159953. [PMID: 37252114 PMCID: PMC10214280 DOI: 10.3389/fcvm.2023.1159953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
The primary pharmacological action of sodium-glucose co-transporter 2 (SGLT2) inhibitors is to inhibit the reabsorption of glucose and sodium ions from the proximal tubules of the kidney and to promote urinary glucose excretion. Notably, several clinical trials have recently demonstrated potent protective effects of SGLT2 inhibitors in patients with heart failure (HF) or chronic kidney disease (CKD), regardless of the presence or absence of diabetes. However, the impact of SGLT2 inhibitors on sudden cardiac death (SCD) or fatal ventricular arrhythmias (VAs), the pathophysiology of which is partly similar to that of HF and CKD, remains undetermined. The cardiorenal protective effects of SGLT2 inhibitors have been reported to include hemodynamic improvement, reverse remodeling of the failing heart, amelioration of sympathetic hyperactivity, correction of anemia and impaired iron metabolism, antioxidative effects, correction of serum electrolyte abnormalities, and antifibrotic effects, which may lead to prevent SCD and/or VAs. Recently, as possible direct cardiac effects of SGLT2 inhibitors, not only inhibition of Na+/H+ exchanger (NHE) activity, but also suppression of late Na+ current have been focused on. In addition to the indirect cardioprotective mechanisms of SGLT2 inhibitors, suppression of aberrantly increased late Na+ current may contribute to preventing SCD and/or VAs via restoration of the prolonged repolarization phase in the failing heart. This review summarizes the results of previous clinical trials of SGLT2 inhibitors for prevention of SCD, their impact on the indices of electrocardiogram, and the possible molecular mechanisms of their anti-arrhythmic effects.
Collapse
Affiliation(s)
- Tatsuya Sato
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Cardiovascular, Renal, and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hidemichi Kouzu
- Department of Cardiovascular, Renal, and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshiyuki Yano
- Department of Cardiovascular, Renal, and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ichiro Sakuma
- Caress Sapporo Hokko Memorial Clinic, Sapporo, Japan
| | - Masato Furuhashi
- Department of Cardiovascular, Renal, and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Noritsugu Tohse
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
12
|
Abstract
ABSTRACT The incidence of abdominal aortic aneurysm (AAA) in the elderly is increasing year by year with high mortality. Current treatment is mainly through surgery or endovascular intervention, which is not sufficient to reduce future risk. Therefore, we still need to find an effective conservative measure as an adjunct therapy or early intervention to prevent AAA progression. Traditional therapeutic agents, such as β-receptor blockers, calcium channel blockers, and statins, have been shown to have limited effects on the growth of AAA. Recently, sodium-glucose cotransport proteins inhibitors (SGLT2is), a new class hypoglycemic drug, have shown outstanding beneficiary effects on cardiovascular diseases by plasma volume reduction, vascular tone regulation, and various unidentified mechanisms. It has been demonstrated that SGLT2i is abundantly expressed in the aorta, and some studies also showed promising results of SGLT2i in treating animal AAA models. This article aims to summarize the recent progress of AAA studies and look forward to the application of SGLT2i in AAA treatment for early intervention or adjunct therapy after surgical repair or stent graft.
Collapse
Affiliation(s)
- Zhongtiao Jin
- Master of Medicine, Department of Endocrinology, Renmin Hospital of Wuhan University, 430060, China; and
| | - Hongping Deng
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, 430060, China.
| | - Sizheng Xiong
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, 430060, China.
| | - Ling Gao
- Master of Medicine, Department of Endocrinology, Renmin Hospital of Wuhan University, 430060, China; and
| |
Collapse
|
13
|
Mechanism of canagliflozin-induced vasodilation in resistance mesenteric arteries and the regulation of systemic blood pressure. J Pharmacol Sci 2022; 150:211-222. [DOI: 10.1016/j.jphs.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/18/2022] [Accepted: 09/21/2022] [Indexed: 11/21/2022] Open
|
14
|
Zou R, Shi W, Qiu J, Zhou N, Du N, Zhou H, Chen X, Ma L. Empagliflozin attenuates cardiac microvascular ischemia/reperfusion injury through improving mitochondrial homeostasis. Cardiovasc Diabetol 2022; 21:106. [PMID: 35705980 PMCID: PMC9202214 DOI: 10.1186/s12933-022-01532-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/25/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Empagliflozin has been reported to protect endothelial cell function, regardless of diabetes status. However, the role of empagliflozin in microvascular protection during myocardial ischemia reperfusion injury (I/R) has not been fully understood. METHODS Electron microscopy, western blots, immunofluorescence, qPCR, mutant plasmid transfection, co-immunoprecipitation were employed to explore whether empagliflozin could alleviate microvascular damage and endothelial injury during cardiac I/R injury. RESULTS In mice, empagliflozin attenuated I/R injury-induced microvascular occlusion and microthrombus formation. In human coronary artery endothelial cells, I/R injury led to adhesive factor upregulation, endothelial nitric oxide synthase inactivation, focal adhesion kinase downregulation, barrier dysfunction, cytoskeletal degradation and cellular apoptosis; however, empagliflozin treatment diminished these effects. Empagliflozin improved mitochondrial oxidative stress, mitochondrial respiration and adenosine triphosphate metabolism in I/R-treated human coronary artery endothelial cells by preventing the phosphorylation of dynamin-related protein 1 (Drp1) and mitochondrial fission 1 protein (Fis1), thus repressing mitochondrial fission. The protective effects of empagliflozin on mitochondrial homeostasis and endothelial function were abrogated by the re-introduction of phosphorylated Fis1, but not phosphorylated Drp1, suggesting that Fis1 dephosphorylation is the predominant mechanism whereby empagliflozin inhibits mitochondrial fission during I/R injury. Besides, I/R injury induced Fis1 phosphorylation primarily by activating the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) pathway, while empagliflozin inactivated this pathway by exerting anti-oxidative effects. CONCLUSIONS These results demonstrated that empagliflozin can protect the microvasculature by inhibiting the DNA-PKcs/Fis1/mitochondrial fission pathway during myocardial I/R injury.
Collapse
Affiliation(s)
- Rongjun Zou
- Heart Center, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Wanting Shi
- Department of Paediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.,Child Healthcare Department, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Junxiong Qiu
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China
| | - Na Zhou
- Child Healthcare Department, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.,Department of extracorporeal circulation, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Na Du
- Department of Nursing, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Hao Zhou
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, 100048, Beijing, China. .,Department of Cardiology, Chinese PLA General Hospital, Medical School of Chinese PLA, 100037, Beijing, China.
| | - Xinxin Chen
- Heart Center, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Li Ma
- Heart Center, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| |
Collapse
|
15
|
Hasan A, Menon SN, Zerin F, Hasan R. Dapagliflozin induces vasodilation in resistance-size mesenteric arteries by stimulating smooth muscle cell K V7 ion channels. Heliyon 2022; 8:e09503. [PMID: 35647331 PMCID: PMC9131249 DOI: 10.1016/j.heliyon.2022.e09503] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/17/2022] [Accepted: 05/16/2022] [Indexed: 02/07/2023] Open
Abstract
Dapagliflozin is a sodium-glucose cotransporter 2 (SGLT2) inhibitor that, in addition to glucose reduction, lowers systemic blood pressure. Here, we investigated if dapagliflozin could directly relax small mesenteric arteries that control peripheral vascular resistance and blood pressure, and the underlying molecular mechanism. We used pressurized arterial myography, pharmacological inhibition and Western blotting to investigate the direct effect of dapagliflozin on the contractility of freshly isolated, resistance-size rat mesenteric arteries. Our pressure myography data unveiled that dapagliflozin relaxed small mesenteric arteries in a concentration-dependent manner. Non-selective inhibition of KV channels and selective inhibition of smooth muscle cell voltage-gated K+ channels KV7 attenuated dapagliflozin-induced vasorelaxation. Inhibition of other major KV isoforms such as KV1.3, KV1.5 channels as well as large-conductance Ca2+-activated K+ (BKCa) channels, ATP-sensitive (KATP) channels did not abolish vasodilation. Dapagliflozin-evoked vasodilation remained unaltered by pharmacological inhibition of endothelium-derived nitric oxide (NO) signaling, prostacyclin (PGI2), as well as by endothelium denudation. Our Western blotting data revealed that SGLT2 protein is expressed in rat mesenteric arteries. However, non-selective inhibition of SGLTs did not induce vasodilation, demonstrating that the vasodilatory action is independent of SGLT2 inhibition. Overall, our data suggests that dapagliflozin directly and selectively stimulates arterial smooth muscle cells KV7 channels, leading to vasodilation in resistance-size mesenteric arteries. These findings are significant as it uncovers for the first time a direct vasodilatory action of dapagliflozin in resistance mesenteric arteries, which may lower systemic blood pressure.
Collapse
Affiliation(s)
- Ahasanul Hasan
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, United States
| | - Sreelakshmi N. Menon
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, United States
| | - Farzana Zerin
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, United States
| | - Raquibul Hasan
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, United States
| |
Collapse
|
16
|
Neflamapimod induces vasodilation in resistance mesenteric arteries by inhibiting p38 MAPKα and downstream Hsp27 phosphorylation. Sci Rep 2022; 12:4905. [PMID: 35318382 PMCID: PMC8941071 DOI: 10.1038/s41598-022-08877-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/15/2022] [Indexed: 01/02/2023] Open
Abstract
Neflamapimod, a selective inhibitor of p38 mitogen activated protein kinase alpha (MAPKα), is under clinical investigation for its efficacy in Alzheimer's disease (AD) and dementia with Lewy Bodies (DLB). Here, we investigated if neflamapimod-mediated acute inhibition of p38 MAPKα could induce vasodilation in resistance-size rat mesenteric arteries. Our pressure myography data demonstrated that neflamapimod produced a dose-dependent vasodilation in mesenteric arteries. Our Western blotting data revealed that acute neflamapimod treatment significantly reduced the phosphorylation of p38 MAPKα and its downstream target heat-shock protein 27 (Hsp27) involved in cytoskeletal reorganization and smooth muscle contraction. Likewise, non-selective inhibition of p38 MAPK by SB203580 attenuated p38 MAPKα and Hsp27 phosphorylation, and induced vasodilation. Endothelium denudation or pharmacological inhibition of endothelium-derived vasodilators such as nitric oxide (NO) and prostacyclin (PGI2) had no effect on such vasodilation. Neflamapimod-evoked vasorelaxation remained unaltered by the inhibition of smooth muscle cell K+ channels. Altogether, our data for the first time demonstrates that in resistance mesenteric arteries, neflamapimod inhibits p38 MAPKα and phosphorylation of its downstream actin-associated protein Hsp27, leading to vasodilation. This novel finding may be clinically significant and is likely to improve systemic blood pressure and cognitive deficits in AD and DLB patients for which neflamapimod is being investigated.
Collapse
|