1
|
Saleem A, Farooq U, Bukhari SM, Khan S, Zaidi A, Wani TA, Shaikh AJ, Sarwar R, Mahmud S, Israr M, Khan FA, Shahzad SA. Isoxazole Derivatives against Carbonic Anhydrase: Synthesis, Molecular Docking, MD Simulations, and Free Energy Calculations Coupled with In Vitro Studies. ACS OMEGA 2022; 7:30359-30368. [PMID: 36061660 PMCID: PMC9434621 DOI: 10.1021/acsomega.2c03600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/02/2022] [Indexed: 05/28/2023]
Abstract
Heterocyclic compounds with a five-membered ring as a core, particularly those containing more than one heteroatom, have a wide spectrum of biological functions, especially in enzyme inhibition. In this study, we present the synthesis of five-membered heterocyclic isoxazole derivatives via sonication of ethyl butyrylacetate with aromatic aldehyde in the presence of a SnII-Mont K10 catalyst. The synthesized compounds were characterized using sophisticated spectroscopic methods. In vitro testing of the compounds reveals three derivatives with significant inhibitory action against carbonic anhydrase (CA) enzyme. The compound AC2 revealed the most promising inhibitory activity against CA among the entire series, with an IC50 = 112.3 ± 1.6 μM (%inh = 79.5) followed by AC3 with an IC50 = 228.4 ± 2.3 μM (%inh = 68.7) compared to the standard with 18.6 ± 0.5 μM (%inh = 87.0). Molecular docking (MD) study coupled with extensive MD simulations (400 ns) and MMPBSA study fully supported the in vitro enzyme inhibition results, evident from the computed ΔG bind (AC2 = -13.53 and AC3 = -12.49 kcal/mol). The in vitro and in silico studies are also augmented by a fluorescence-based enzymatic assay in which compounds AC2 and AC3 showed significant fluorescence enhancement. Therefore, on the basis of the present study, it is inferred that AC2 and AC3 may serve as a new framework for designing effective CA inhibitors.
Collapse
Affiliation(s)
- Afia Saleem
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, KPK, Pakistan
| | - Umar Farooq
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, KPK, Pakistan
| | - Syed Majid Bukhari
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, KPK, Pakistan
| | - Sara Khan
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, KPK, Pakistan
| | - Asma Zaidi
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, KPK, Pakistan
| | - Tanveer A. Wani
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahson Jabbar Shaikh
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, KPK, Pakistan
| | - Rizwana Sarwar
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, KPK, Pakistan
| | - Shafi Mahmud
- Division
of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Muhammad Israr
- Pakistan
Science Foundation, 1-Constitution Avenue, G-5/2, Islamabad 44000, Pakistan
| | - Farhan A. Khan
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, KPK, Pakistan
| | - Sohail Anjum Shahzad
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, KPK, Pakistan
| |
Collapse
|