1
|
Wang J, Liang Y, Meng Y, Chen J, Fang L, Yang H, Li P. Assessment of lncRNA biomarkers based on NETs for prognosis and therapeutic response in ovarian cancer. Sci Rep 2025; 15:13042. [PMID: 40234525 PMCID: PMC12000398 DOI: 10.1038/s41598-025-97548-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 04/04/2025] [Indexed: 04/17/2025] Open
Abstract
Ovarian cancer (OC) usually progresses rapidly and is associated with high mortality, while a reliable clinical factor for OC patients to predict prognosis is currently lacking. Recently, the pathogenic role of neutrophils releasing neutrophil extracellular traps (NETs) in various cancers including OC has gradually been recognized. The study objective was to determine whether NETs-related biomarkers can be used to accurately predict the prognosis and guide clinical decision-making in OC. In this study, we utilized univariate and multivariate Cox regression to identify key prognostic features and developed a model with six NETs-related lncRNAs, selected via LASSO regression. The model's predictive capability was assessed through Kaplan-Meier, ROC, and Cox analyses. To understand the model's mechanisms, we conducted GO term analysis, KEGG pathway enrichment, and GSEA. We also analyzed gene mutation status, tumor mutation load, survival rates, and model correlation. Additionally, we compared immune functions, immune checkpoint expression, and chemotherapy sensitivity between risk groups. Besides, we validated the model's predictive value using test data and tissues acquired from our institution. Finally, we performed in vitro and in vivo experiments to confirm the expression of model lncRNAs and the cellular level function of GAS5. We developed a model using six NETs-associated lncRNAs: GAS5, GBP1P1, LINC00702, LINC01933, LINC02362, and ZNF687-AS1. The model's predictive performance, evaluated via ROC curve, was compared with traditional clinicopathological features. GO process analysis highlighted molecular functions related to antigen binding and immune system biological processes. Variations were observed in transcription regulators affecting immune response, inflammation, cytotoxicity, and regulation. We also predicted IC50 values for chemotherapeutic drugs (bexarotene, bicalutamide, embelin, GDC0941, and thapsigargin) in high- and low-risk groups, finding higher IC50 values in low-risk patients. The risk model's robustness was validated using OC cells, tissues, and clinical datas.
Collapse
Affiliation(s)
- Jingmeng Wang
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Laboratory of Department of Anatomy, Harbin Medical University, Harbin, China
| | - Yusen Liang
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Laboratory of Department of Anatomy, Harbin Medical University, Harbin, China
| | - Yimei Meng
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Laboratory of Department of Anatomy, Harbin Medical University, Harbin, China
| | - Jialin Chen
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Laboratory of Department of Anatomy, Harbin Medical University, Harbin, China
| | - Lei Fang
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huike Yang
- Laboratory of Department of Anatomy, Harbin Medical University, Harbin, China.
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, China.
| | - Peiling Li
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Zhang Y, Dong K, Jia X, Du S, Wang D, Wang L, Qu H, Zhu S, Wang Y, Wang Z, Zhang S, Sun W, Fu S. A novel extrachromosomal circular DNA related genes signature for overall survival prediction in patients with ovarian cancer. BMC Med Genomics 2023; 16:140. [PMID: 37337170 DOI: 10.1186/s12920-023-01576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 06/09/2023] [Indexed: 06/21/2023] Open
Abstract
OBJECTIVE Ovarian cancer (OV) has a high mortality rate all over the world, and extrachromosomal circular DNA (eccDNA) plays a key role in carcinogenesis. We wish to study more about the molecular structure of eccDNA in the UACC-1598-4 cell line and how its genes are associated with ovarian cancer prognosis. METHODS We sequenced and annotated the eccDNA by Circle_seq of the OV cell line UACC-1598-4. To acquire the amplified genes of OV on eccDNA, the annotated eccDNA genes were intersected with the overexpression genes of OV in TCGA. Univariate Cox regression was used to find the genes on eccDNA that were linked to OV prognosis. The least absolute shrinkage and selection operator (LASSO) and cox regression models were used to create the OV prognostic model, as well as the receiver operating characteristic curve (ROC) curve and nomogram of the prediction model. By applying the median value of the risk score, the samples were separated into high-risk and low-risk groups, and the differences in immune infiltration between the two groups were examined using ssGSEA. RESULTS EccDNA in UACC-1598-4 has a length of 0-2000 bp, and some of them include the whole genes or gene fragments. These eccDNA originated from various parts of chromosomes, especially enriched in repeatmasker, introns, and coding regions. They were annotated with 2188 genes by Circle_seq. Notably, the TCGA database revealed that a total of 198 of these eccDNA genes were overexpressed in OV (p < 0.05). They were mostly enriched in pathways associated with cell adhesion, ECM receptors, and actin cytoskeleton. Univariate Cox analysis showed 13 genes associated with OV prognosis. LASSO and Cox regression analysis were used to create a risk model based on remained 9 genes. In both the training (TCGA database) and validation (International Cancer Genome Consortium, ICGC) cohorts, a 9-gene signature could successfully discriminate high-risk individuals (all p < 0.01). Immune infiltration differed significantly between the high-risk and low-risk groups. The model's area under the ROC curve was 0.67, and a nomograph was created to assist clinician. CONCLUSION EccDNA is found in UACC-1598-4, and part of its genes linked to OV prognosis. Patients with OV may be efficiently evaluated using a prognostic model based on eccDNA genes, including SLC7A1, NTN1, ADORA1, PADI2, SULT2B1, LINC00665, CILP2, EFNA5, TOMM.
Collapse
Affiliation(s)
- Ying Zhang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Kexian Dong
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Xueyuan Jia
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Shuomeng Du
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Dong Wang
- Scientific Research Centre, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Liqiang Wang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Han Qu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Shihao Zhu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Yang Wang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Zhao Wang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Shuopeng Zhang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Wenjing Sun
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Songbin Fu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China.
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China.
| |
Collapse
|
3
|
Immunotherapeutic Approaches in Ovarian Cancer. Curr Issues Mol Biol 2023; 45:1233-1249. [PMID: 36826026 PMCID: PMC9955550 DOI: 10.3390/cimb45020081] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer (OC) is gynecological cancer, and diagnosis and treatment are continuously advancing. Next-generation sequencing (NGS)-based diagnoses have emerged as novel methods for identifying molecules and pathways in cancer research. The NGS-based applications have expanded in OC research for early detection and identification of aberrant genes and dysregulation pathways, demonstrating comprehensive views of the entire transcriptome, such as fusion genes, genetic mutations, and gene expression profiling. Coinciding with advances in NGS-based diagnosis, treatment strategies for OC, such as molecular targeted therapy and immunotherapy, have also advanced. Immunotherapy is effective against many other cancers, and its efficacy against OC has also been demonstrated at the clinical phase. In this review, we describe several NGS-based applications for therapeutic targets of OC, and introduce current immunotherapeutic strategies, including vaccines, checkpoint inhibitors, and chimeric antigen receptor (CAR)-T cell transplantation, for effective diagnosis and treatment of OC.
Collapse
|
4
|
Hu Z, Liu Y, Liu M, Zhang Y, Wang C. Roles of TGF‑β signalling pathway‑related lncRNAs in cancer (Review). Oncol Lett 2023; 25:107. [PMID: 36817052 PMCID: PMC9932718 DOI: 10.3892/ol.2023.13693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/13/2023] [Indexed: 02/04/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are a class of RNAs that are >200 nucleotides in length that do not have the ability to be translated into protein but are associated with numerous diseases, including cancer. The involvement of lncRNAs in the signalling of certain signalling pathways can promote tumour progression; these pathways include the transforming growth factor (TGF)-β signalling pathway, which is related to tumour development. The expression of lncRNAs in various tumour tissues is specific, and their interaction with the TGF-β signalling pathway indicates that they may serve as new tumour markers and therapeutic targets. The present review summarized the role of TGF-β pathway-associated lncRNAs in regulating tumorigenesis in different types of cancer and their effects on the TGF-β signalling pathway.
Collapse
Affiliation(s)
- Zhizhong Hu
- Cancer Research Institute, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yitong Liu
- Cancer Research Institute, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Meiqi Liu
- Cancer Research Institute, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yang Zhang
- Cancer Research Institute, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China,Correspondence to: Dr Yang Zhang or Dr Chengkun Wang, Cancer Research Institute, Medical School, University of South China, 28 Chang Sheng Xi Avenue, Hengyang, Hunan 421001, P.R. China, E-mail:
| | - Chengkun Wang
- Cancer Research Institute, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China,Correspondence to: Dr Yang Zhang or Dr Chengkun Wang, Cancer Research Institute, Medical School, University of South China, 28 Chang Sheng Xi Avenue, Hengyang, Hunan 421001, P.R. China, E-mail:
| |
Collapse
|
5
|
Ji Y, Zhang G, Zhang X. Identification of LncRNA CARD8-AS1 as a Potential Prognostic Biomarker Associated With Progression of Lung Adenocarcinoma. Br J Biomed Sci 2022; 79:10498. [PMID: 35996500 PMCID: PMC9302548 DOI: 10.3389/bjbs.2022.10498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022]
Abstract
Introduction: Long non-coding RNAs (lncRNAs) exhibit crucial roles in human tumors. However, the role of lncRNA CARD8-AS1 in lung adenocarcinoma remains elusive. This study investigated the role of CARD8-AS1 in lung adenocarcinoma.Materials and Methods: The expression of CARD8-AS1 was detected by RT-qPCR analysis and confirmed using an online database. The clinical value of CARD8-AS1 was evaluated using the Kaplan-Meier curve and multivariate Cox regression analyses. The effects of CARD8-AS1 on cancer cell proliferation, migration, and invasion potential were assessed through several cellular experiments. Western blot assay was used to measure Bcl-2 and Bax protein levels. The interaction among CARD8-AS1, miR-650, and Bax, was assessed using a dual-luciferase reporter assay.Results: The expression of CARD8-AS1 was decreased in lung adenocarcinoma tissues and cell lines (p < 0.001). Low expression of CARD8-AS1 was related to tumor size (p = 0.042), TNM stage (p = 0.021), lymph node metastasis (p = 0.025), and poor overall survival (p < 0.05). Elevated expression of CARD8-AS1 could suppress cellular viability, migration potential, and invasion ability (p < 0.05). The Bcl-2 protein levels were decreased while Bax levels were increased by overexpression of CARD8-AS1 (p < 0.001). miR-650 may thus be a direct target of CARD8-AS1 and Bax may be a direct target of miR-650.Discussion: CARD8-AS1 expression was downregulated in lung adenocarcinoma and associated with several clinical parameters. CARD8-AS1 exerted tumor-suppressive effects by targeting the miR-650 and then regulating Bax expression. CARD8-AS1/miR-650 may serve as novel prognostic biomarkers and potential therapeutic targets for the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Yong Ji
- Department of Respiratory, Shanghai General Hospital - Songjiang South Campus, Shanghai, China
| | - Guoqing Zhang
- Department of Respiratory, Shanghai General Hospital - Jiading Campus, Shanghai, China
- *Correspondence: Xingyi Zhang, ; Guoqing Zhang,
| | - Xingyi Zhang
- Department of Respiratory, Shanghai General Hospital - Songjiang South Campus, Shanghai, China
- *Correspondence: Xingyi Zhang, ; Guoqing Zhang,
| |
Collapse
|
6
|
Chen X, Guo J, Zhou F, Ren W, Huang X, Pu J, Niu X, Jiang X. Long Non-Coding RNA AL139385.1 as a Novel Prognostic Biomarker in Lung Adenocarcinoma. Front Oncol 2022; 12:905871. [PMID: 35651789 PMCID: PMC9149219 DOI: 10.3389/fonc.2022.905871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 12/25/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common histological lung cancer, and it is the leading cause of cancer-related deaths worldwide. LncRNA-AL139385.1 (ENSG00000275880) is a novel lncRNA that is abnormally expressed in various cancer types including LUAD. However, the underlying biological function and potential mechanisms of AL139385.1 driving the progression of LUAD remain unclear. In this study, we investigated the role of AL139385.1 in LUAD and found that DNA hypomethylation was positively correlated with AL139385.1 expression in LUAD. Moreover, we uncover that the expression of AL139385.1 in LUAD tissues was significantly higher than that of AL139385.1 expression in adjacent normal tissues. Kaplan-Meier survival analysis showed that patients with higher AL139385.1 expression correlated with adverse overall survival and progression-free survival. Receiver operating characteristic (ROC) curve analysis showed that the area under the curve (AUC) value of AL139385.1 was 0.808. Correlation analysis showed that AL139385.1 expression was associated with immune infiltration in LUAD. We also found that AL139385.1 was upregulated in LUAD cancer tissues and cell lines. Knockdown of AL139385.1 significantly inhibited cell proliferation and migration abilities of LUAD. Finally, we constructed a ceRNA network that includes hsa-miR-532-5p and four mRNAs (GALNT3, CYCS, EIF5A, and ITGB4) specific to AL139385.1 in LUAD. Subsequent Kaplan-Meier survival analysis suggested that polypeptide N-acetylgalactosaminyltransferase 3 (GALNT3), cytochrome c, somatic (CYCS), eukaryotic translation initiation factor 5A (EIF5A), and integrin subunit beta 4 (ITGB4), were potential prognostic biomarkers for patients with LUAD. In conclusion, this finding provides possible mechanisms underlying the abnormal upregulation of AL139385.1 as well as a comprehensive view of the AL139385.1-mediated competing endogenous RNAs (ceRNA) network in LUAD, thereby highlighting its potential role in diagnosis and therapy.
Collapse
Affiliation(s)
- Xi Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jishu Guo
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Fan Zhou
- Hematology and Rheumatology Department, The Pu’er People’s Hospital, Pu’er, China
| | - Wenjun Ren
- Department of Cardiovascular Surgery, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Xiaobin Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jun Pu
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaoqun Niu
- Department of Respiratory Medicine, Second Hospital of Kunming Medical University, Kunming, China
| | - Xiulin Jiang
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Farooqi AA, Kapanova G, Kussainov AZ, Datkhayeva Z, Raganina K, Sadykov BN. Regulation of RASSF by non-coding RNAs in different cancers. Noncoding RNA Res 2022; 7:123-131. [PMID: 35702574 PMCID: PMC9163590 DOI: 10.1016/j.ncrna.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 11/25/2022] Open
Abstract
Ras-association domain family (RASSF) proteins are tumor suppressors and have gained phenomenal limelight because of their mechanistic role in the prevention/inhibition of carcinogenesis and metastasis. Decades of research have demystified wide ranging activities of RASSF molecules in multiple stages of cancers. Although major fraction of RASSF molecules has tumor suppressive roles, yet there is parallel existence of proof-of-concept about moonlighting activities of RASSF proteins as oncogenes. RASSF proteins tactfully rewire signaling cascades for prevention of cancer and metastasis but circumstantial evidence also illuminates oncogenic role of different RASSF proteins in different cancers. In this review we have attempted to provide readers an overview of the complex interplay between non-coding RNAs and RASSF proteins and how these versatile regulators shape the landscape of carcinogenesis and metastasis.
Collapse
|