1
|
Liu Y, Huang Y, Li Z, Feng M, Ge W, Zhong C, Xue R. Genome-wide identification of the TGA genes in common bean ( Phaseolus vulgaris) and revealing their functions in response to Fusarium oxysporum f. sp. phaseoli infection. Front Genet 2023; 14:1137634. [PMID: 36755571 PMCID: PMC9901207 DOI: 10.3389/fgene.2023.1137634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023] Open
Abstract
Fusarium wilt, which affects common bean all across the world, is caused by Fusarium oxysporum f. sp. Phaseoli (Fop). It is necessary to have functional genes in response to Fop infection because they might be used to manage disease. As a crucial regulator, TGA-binding transcription factor (TGA) is engaged in the defense mechanism of plants against pathogens. The role of TGA regulators in common bean in response to Fop infection, however, has not been documented. Hence, we performed genome-wide identified and characterized eight TGA genes in common bean. In this study, eight PvTGA genes were distributed on six chromosomes and classified into four subgroups. The PvTGA genes have the same conserved bZIP and DOG1 domains, but there are specific sequence structures in different PvTGAs. Phylogenetic and synteny analysis explained that PvTGA gene has a close genetic relationship with legume TGAs and that PvTGA03 and PvTGA05 may play an important role in evolution. Transcriptome data explained that expression levels of PvTGA genes showed diversity in different tissues. After Fop inoculation, the expression levels of PvTGA03 and PvTGA07 were significantly different between resistant and susceptible genotypes. Under SA treatment, the expression levels of PvTGA03, PvTGA04, PvTGA06, PvTGA07 and PvTGA08 were significantly different. These results imply that PvTGA03 and PvTGA07 play key roles in SA-mediated resistance to Fusarium wilt. Together, these findings advance knowledge of the PvTGA gene family in common bean and will help future studies aimed at reducing Fusarium wilt.
Collapse
Affiliation(s)
- Yu Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, China,Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China,Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Shenyang, China
| | - Yuning Huang
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China,Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Shenyang, China
| | - Zhao Li
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Ming Feng
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China,Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Shenyang, China
| | - Weide Ge
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China,Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Shenyang, China
| | - Chao Zhong
- College of Agronomy, Shenyang Agricultural University, Shenyang, China,*Correspondence: Chao Zhong, ; Renfeng Xue,
| | - Renfeng Xue
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China,Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Shenyang, China,*Correspondence: Chao Zhong, ; Renfeng Xue,
| |
Collapse
|
2
|
Tian T, Yu R, Suo Y, Cheng L, Li G, Yao D, Song Y, Wang H, Li X, Gao G. A Genome-Wide Analysis of StTGA Genes Reveals the Critical Role in Enhanced Bacterial Wilt Tolerance in Potato During Ralstonia solanacearum Infection. Front Genet 2022; 13:894844. [PMID: 35957683 PMCID: PMC9360622 DOI: 10.3389/fgene.2022.894844] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
TGA is one of the members of TGACG sequence-specific binding protein family, which plays a crucial role in the regulated course of hormone synthesis as a stress-responsive transcription factor (TF). Little is known, however, about its implication in response to bacterial wilt disease in potato (Solanum tuberosum) caused by Ralstonia solanacearum. Here, we performed an in silico identification and analysis of the members of the TGA family based on the whole genome data of potato. In total, 42 StTGAs were predicted to be distributed on four chromosomes in potato genome. Phylogenetic analysis showed that the proteins of StTGAs could be divided into six sub-families. We found that many of these genes have more than one exon according to the conserved motif and gene structure analysis. The heat map inferred that StTGAs are generally expressed in different tissues which are at different stages of development. Genomic collinear analysis showed that there are homologous relationships among potato, tomato, pepper, Arabidopsis, and tobacco TGA genes. Cis-element in silico analysis predicted that there may be many cis-acting elements related to abiotic and biotic stress upstream of StTGA promoter including plant hormone response elements. A representative member StTGA39 was selected to investigate the potential function of the StTGA genes for further analysis. Quantitative real-time polymerase chain reaction (qRT-PCR) assays indicated that the expression of the StTGAs was significantly induced by R. solanacearum infection and upregulated by exogenous salicylic acid (SA), abscisic acid (ABA), gibberellin 3 (GA3), and methyl jasmonate (MeJA). The results of yeast one-hybrid (Y1H) assay showed that StTGA39 regulates S. tuberosum BRI1-associated receptor kinase 1 (StBAK1) expression. Thus, our study provides a theoretical basis for further research of the molecular mechanism of the StTGA gene of potato tolerance to bacterial wilt.
Collapse
Affiliation(s)
- Tian Tian
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Ruimin Yu
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Yanyun Suo
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Lixiang Cheng
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Guizhi Li
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Dan Yao
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Yanjie Song
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Huanjun Wang
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Xinyu Li
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Gang Gao
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| |
Collapse
|
3
|
Yang Y, Li HG, Liu M, Wang HL, Yang Q, Yan DH, Zhang Y, Li Z, Feng CH, Niu M, Liu C, Yin W, Xia X. PeTGA1 enhances disease resistance against Colletotrichum gloeosporioides through directly regulating PeSARD1 in poplar. Int J Biol Macromol 2022; 214:672-684. [PMID: 35738343 DOI: 10.1016/j.ijbiomac.2022.06.099] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/19/2022] [Accepted: 06/12/2022] [Indexed: 11/28/2022]
Abstract
Basic leucine zipper (bZIP) proteins play important roles in responding to biotic and abiotic stresses in plants. However, the molecular mechanisms of plant resistance to pathogens remain largely unclear in poplar. The present study isolated a TGACG-binding (TGA) transcription factor, PeTGA1, from Populus euphratica. PeTGA1 belongs to subgroup D of the bZIP family and was localized to the nucleus. To study the role PeTGA1 plays in response to Colletotrichum gloeosporioides, transgenic triploid white poplars overexpressing PeTGA1 were generated. Results showed that poplars with overexpressed PeTGA1 showed a higher effective defense response to C. gloeosporioides than the wild-type plants. A yeast one-hybrid assay and an electrophoretic mobility shift assay revealed that PeTGA1 could directly bind to the PeSARD1 (P. euphratica SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1) promoter, an important regulator for salicylic acid biosynthesis. The transactivation assays indicated that PeTGA1 activated the expression of PeSARD1, and PR1 (PATHOGENESIS-RELATED 1), a SA marker gene involved in SA signaling. Subsequently, we observed that the PeTGA1 overexpression lines showed elevated SA levels, thereby resulting in the increased resistance to C. gloeosporioides. Taken together, our results indicated that PeTGA1 may exert a key role in plant immunity not only by targeting PeSARD1 thus participating in the SA biosynthesis pathway but also by involving in SA signaling via activating the expression of PR1.
Collapse
Affiliation(s)
- Yanli Yang
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Hui-Guang Li
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Meiying Liu
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Hou-Ling Wang
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Qi Yang
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Dong-Hui Yan
- Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, The Key Laboratory of Forest Protection Affiliated to State Forestry and Grassland Administration of China, Beijing 100091, China.
| | - Ying Zhang
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhonghai Li
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Cong-Hua Feng
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Mengxue Niu
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Chao Liu
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Weilun Yin
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Xinli Xia
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|