1
|
Yang R, Wang W, Yin G, Ma T, Tao J. An Eleven-Year Retrospective Survey of Anaerobic Bloodstream Infection in Adults in a General Hospital. Infect Drug Resist 2024; 17:4521-4530. [PMID: 39444523 PMCID: PMC11498043 DOI: 10.2147/idr.s482698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024] Open
Abstract
Objective During conditions accompanied by the disruption of normal mucosal barriers, anaerobic bacteria, which a part of normal human mucosal microflora, may cause various infections. In this study, clinical features of anaerobic bloodstream infections (BSI) in a general hospital in China were investigated. Methods Patients with anaerobic BSI were retrospectively enrolled between 2012 and 2022. Demographic data, clinical manifestations, antibiotic treatments, and disease outcomes were analyzed. Results In total, 391 anaerobic bacterial strains were isolated from 381 patients aged older than 11 years of age. Given that medical records of 47 patients were missing, 334 patients were included in the clinical investigation. Patients with anaerobic BSI included in the study were predominantly older than 50 years of age. Intra-abdominal infections were the most common source of anaerobic BSI (59%), followed by those of the female genital tract (10.2%) and lower respiratory tract (7.2%). Among the isolates, Bacteroides and Clostridium spp. were the most frequently isolated anaerobes. Most of the patients received antibiotic therapy. The crude mortality was 4.5%. Conclusion The detection rate of anaerobic BSI in Ningxia, China, remained relatively stable from 2012 to 2022. These results provide a reference for the diagnosis and empirical treatment of anaerobic BSI in this region of China. Continuous mul-ticenter studies should be conducted to monitor the incidence of anaerobic BSI and drug resistance of anaerobic isolates to improve the treatment outcomes of patients.
Collapse
Affiliation(s)
- Ru Yang
- Center of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Wen Wang
- Center of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Guomin Yin
- Center of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Tingting Ma
- Center of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Jia Tao
- Center of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| |
Collapse
|
2
|
Ye Q, Zhao Y, Zhao J, Ouyang Z, Feng Y, Hu J, Su X, Chen N, Chen Y, Tan L, Feng Y, Guo Y. Prevotella, a dominant bacterium in young people with stage Ⅲ periodontitis, related to the arachidonic acid metabolism pathway. Microbes Infect 2024; 26:105316. [PMID: 38423169 DOI: 10.1016/j.micinf.2024.105316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
OBJECTS As periodontitis progresses, the oral microbiome changes dynamically. The aim of this study is to evaluate the dominant bacteria of adults with stage III periodontitis and investigate potential pathways related to the dominant bacteria. MATERIALS AND METHODS 16S rRNA sequencing was carried out to detect the differences in the oral microbiome between adult with stage Ⅰ and stage Ⅲ periodontitis and find the dominant bacteria in each group. The inhibitor of the predominant pathway for stage Ⅲ periodontitis was used to investigate the role of the dominant bacteria in periodontitis in vivo and in vitro. RESULTS There was no significant difference in the α-diversity between the two groups. The results of β-diversity showed that the samples were divided into different groups according to the stage of periodontitis. The dominant bacteria in youths with stage Ⅲ periodontitis was Prevotella and may be related to the arachidonic acid metabolism pathway. Administration of SKF-86002 suppressed the expression of inflammation mediators in vivo and vitro. CONCLUSIONS Prevotella was the one dominant bacteria in young people with stage Ⅲ periodontitis and was related to the arachidonic acid metabolism pathway.
Collapse
Affiliation(s)
- Qin Ye
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China
| | - Yaqiong Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China
| | - Jie Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China
| | - Zeyue Ouyang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China
| | - Yao Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China
| | - Jing Hu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China
| | - Xiaolin Su
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China
| | - Ningxin Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China
| | - Yun Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China
| | - Li Tan
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China
| | - Yunzhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China.
| | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China.
| |
Collapse
|
3
|
Hau JL, Schleicher L, Herdan S, Simon J, Seifert J, Fritz G, Steuber J. Functionality of the Na +-translocating NADH:quinone oxidoreductase and quinol:fumarate reductase from Prevotella bryantii inferred from homology modeling. Arch Microbiol 2023; 206:32. [PMID: 38127130 PMCID: PMC10739449 DOI: 10.1007/s00203-023-03769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
Members of the family Prevotellaceae are Gram-negative, obligate anaerobic bacteria found in animal and human microbiota. In Prevotella bryantii, the Na+-translocating NADH:quinone oxidoreductase (NQR) and quinol:fumarate reductase (QFR) interact using menaquinone as electron carrier, catalyzing NADH:fumarate oxidoreduction. P. bryantii NQR establishes a sodium-motive force, whereas P. bryantii QFR does not contribute to membrane energization. To elucidate the possible mode of function, we present 3D structural models of NQR and QFR from P. bryantii to predict cofactor-binding sites, electron transfer routes and interaction with substrates. Molecular docking reveals the proposed mode of menaquinone binding to the quinone site of subunit NqrB of P. bryantii NQR. A comparison of the 3D model of P. bryantii QFR with experimentally determined structures suggests alternative pathways for transmembrane proton transport in this type of QFR. Our findings are relevant for NADH-dependent succinate formation in anaerobic bacteria which operate both NQR and QFR.
Collapse
Affiliation(s)
- Jann-Louis Hau
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Lena Schleicher
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen-Weg 3, 70599, Stuttgart, Germany
| | - Sebastian Herdan
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen-Weg 3, 70599, Stuttgart, Germany
| | - Jörg Simon
- Microbial Energy Conservation and Biotechnology, Department of Biology, Technical University of Darmstadt, Schnittspahnstraße 10, 64287, Darmstadt, Germany
| | - Jana Seifert
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen-Weg 3, 70599, Stuttgart, Germany
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Straße 8, 70599, Stuttgart, Germany
| | - Günter Fritz
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Julia Steuber
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany.
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen-Weg 3, 70599, Stuttgart, Germany.
| |
Collapse
|
4
|
Martínez-Espinosa RM, Pire C. Molecular Advances in Microbial Metabolism. Int J Mol Sci 2023; 24:ijms24098015. [PMID: 37175720 PMCID: PMC10178272 DOI: 10.3390/ijms24098015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Climate change, global pollution due to plastics, greenhouse gasses, or heavy metals among other pollutants, as well as limited natural sources due to unsustainable lifestyles and consumption patterns, are revealing the need for more research to understand ecosystems, biodiversity, and global concerns from the microscale to the macroscale [...].
Collapse
Affiliation(s)
- Rosa María Martínez-Espinosa
- Department of Biochemistry, Molecular Biology, Edaphology and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
- Multidisciplinary Institute for Environmental Studies "Ramón Margalef", University of Alicante, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Carmen Pire
- Department of Biochemistry, Molecular Biology, Edaphology and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
- Multidisciplinary Institute for Environmental Studies "Ramón Margalef", University of Alicante, 03690 San Vicente del Raspeig, Alicante, Spain
| |
Collapse
|