1
|
Rekima S, Gautier N, Bonnamy S, Rochet N, Olivier F. Biphasic Calcium Phosphate and Activated Carbon Microparticles in a Plasma Clot for Bone Reconstruction and In Situ Drug Delivery: A Feasibility Study. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1749. [PMID: 38673106 PMCID: PMC11051311 DOI: 10.3390/ma17081749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
The development of bone-filling biomaterials capable of delivering in situ bone growth promoters or therapeutic agents is a key area of research. We previously developed a biomaterial constituting biphasic calcium phosphate (BCP) microparticles embedded in an autologous blood or plasma clot, which induced bone-like tissue formation in ectopic sites and mature bone formation in orthotopic sites, in small and large animals. More recently, we showed that activated carbon (AC) fiber cloth is a biocompatible material that can be used, due to its multiscale porosity, as therapeutic drug delivery system. The present work aimed first to assess the feasibility of preparing calibrated AC microparticles, and second to investigate the properties of a BCP/AC microparticle combination embedded in a plasma clot. We show here, for the first time, after subcutaneous (SC) implantation in mice, that the addition of AC microparticles to a BCP/plasma clot does not impair bone-like tissue formation and has a beneficial effect on the vascularization of the newly formed tissue. Our results also confirm, in this SC model, the ability of AC in particle form to adsorb and deliver large molecules at an implantation site. Altogether, these results demonstrate the feasibility of using this BCP/AC/plasma clot composite for bone reconstruction and drug delivery.
Collapse
Affiliation(s)
- Samah Rekima
- INSERM, CNRS, iBV, Université Côte d’Azur, 06107 Nice, France; (S.R.); (N.G.); (N.R.)
| | - Nadine Gautier
- INSERM, CNRS, iBV, Université Côte d’Azur, 06107 Nice, France; (S.R.); (N.G.); (N.R.)
| | - Sylvie Bonnamy
- CNRS, Université d’Orléans, ICMN UMR 7374, 45071 Orléans, France;
| | - Nathalie Rochet
- INSERM, CNRS, iBV, Université Côte d’Azur, 06107 Nice, France; (S.R.); (N.G.); (N.R.)
| | - Florian Olivier
- CNRS, Université d’Orléans, ICMN UMR 7374, 45071 Orléans, France;
| |
Collapse
|
2
|
Jiang C, Zhu G, Liu Q. Current application and future perspectives of antimicrobial degradable bone substitutes for chronic osteomyelitis. Front Bioeng Biotechnol 2024; 12:1375266. [PMID: 38600942 PMCID: PMC11004352 DOI: 10.3389/fbioe.2024.1375266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
Chronic osteomyelitis remains a persistent challenge for the surgeons due to its refractory nature. Generally, treatment involves extensive debridement of necrotic bone, filling of dead space, adequate antimicrobial therapy, bone reconstruction, and rehabilitation. However, the optimal choice of bone substitute to manage the bone defect remains debatable. This paper reviewed the clinical evidence for antimicrobial biodegradable bone substitutes in the treatment of osteomyelitis in recent years. Indeed, this combination was proved to eradicate infection and facilitate bone reconstruction, which might reduce the cost and hospital stay. Handling was associated with increased risk of unwanted side effect to affect bone healing. The study provides some valuable insights into the clinical evaluation of treatment outcomes in the aspects of infection eradication, bone reconstruction, and complications caused by materials. However, achieving complete infection eradication and subsequently perfect bone reconstruction remains challenging in compromised conditions, hence advanced innovative bone substitutes are imperative. In this review, we mainly focus on the desired functional effects of advanced bone substitutes on infection eradication and bone reconstruction from the future perspective. Handling property was optimized to simplify surgery process. It is expected that this review will provide an important opportunity to enhance the understanding of the design and application of innovative biomaterials to synergistically eradicate infection and restore integrity and function of bone.
Collapse
Affiliation(s)
- Chenxi Jiang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guangxun Zhu
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
3
|
Olivier F, Drouet C, Marsan O, Sarou-Kanian V, Rekima S, Gautier N, Fayon F, Bonnamy S, Rochet N. Long-Term Fate and Efficacy of a Biomimetic (Sr)-Apatite-Coated Carbon Patch Used for Bone Reconstruction. J Funct Biomater 2023; 14:246. [PMID: 37233356 PMCID: PMC10218964 DOI: 10.3390/jfb14050246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Critical bone defect repair remains a major medical challenge. Developing biocompatible materials with bone-healing ability is a key field of research, and calcium-deficient apatites (CDA) are appealing bioactive candidates. We previously described a method to cover activated carbon cloths (ACC) with CDA or strontium-doped CDA coatings to generate bone patches. Our previous study in rats revealed that apposition of ACC or ACC/CDA patches on cortical bone defects accelerated bone repair in the short term. This study aimed to analyze in the medium term the reconstruction of cortical bone in the presence of ACC/CDA or ACC/10Sr-CDA patches corresponding to 6 at.% of strontium substitution. It also aimed to examine the behavior of these cloths in the medium and long term, in situ and at distance. Our results at day 26 confirm the particular efficacy of strontium-doped patches on bone reconstruction, leading to new thick bone with high bone quality as quantified by Raman microspectroscopy. At 6 months the biocompatibility and complete osteointegration of these carbon cloths and the absence of micrometric carbon debris, either out of the implantation site or within peripheral organs, was confirmed. These results demonstrate that these composite carbon patches are promising biomaterials to accelerate bone reconstruction.
Collapse
Affiliation(s)
- Florian Olivier
- CNRS, Université d’Orléans, ICMN UMR 7374, 45071 Orléans, France;
| | - Christophe Drouet
- CIRIMAT, Université de Toulouse, CNRS/UT3/INP, 31062 Toulouse, France; (C.D.); (O.M.)
| | - Olivier Marsan
- CIRIMAT, Université de Toulouse, CNRS/UT3/INP, 31062 Toulouse, France; (C.D.); (O.M.)
| | - Vincent Sarou-Kanian
- CNRS, Université d’Orléans, CEMHTI UPR 3079, 45071 Orléans, France; (V.S.-K.); (F.F.)
| | - Samah Rekima
- Université Côte d’Azur, INSERM, CNRS, iBV, 06107 Nice, France; (S.R.); (N.G.); (N.R.)
| | - Nadine Gautier
- Université Côte d’Azur, INSERM, CNRS, iBV, 06107 Nice, France; (S.R.); (N.G.); (N.R.)
| | - Franck Fayon
- CNRS, Université d’Orléans, CEMHTI UPR 3079, 45071 Orléans, France; (V.S.-K.); (F.F.)
| | - Sylvie Bonnamy
- CNRS, Université d’Orléans, ICMN UMR 7374, 45071 Orléans, France;
| | - Nathalie Rochet
- Université Côte d’Azur, INSERM, CNRS, iBV, 06107 Nice, France; (S.R.); (N.G.); (N.R.)
| |
Collapse
|
4
|
Azizi M, Shavandi A, Hamidi M, Gholizadeh S, Mohammadpour M, Salami MS, Samadian H. Fabrication, characterization and biological properties evaluation of bioactive scaffold based on mineralized carbon nanofibers. J Biomol Struct Dyn 2023; 41:12120-12127. [PMID: 36645133 PMCID: PMC10349904 DOI: 10.1080/07391102.2023.2166117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/01/2023] [Indexed: 01/17/2023]
Abstract
Tissue engineering as an innovative approach aims to combine engineering, biomaterials and biomedicine to eliminate the drawbacks of conventional bone defect treatment. In the current study, we fabricated bioengineered electroactive and bioactive mineralized carbon nanofibers as the scaffold for bone tissue engineering applications. The scaffold was fabricated using the sol-gel method and thoroughly characterized by SEM imaging, EDX analysis and a 4-point probe. The results showed that the CNFs have a diameter of 200 ± 19 nm and electrical conductivity of 1.02 ± 0.12 S cm-1. The in vitro studies revealed that the synthesized CNFs were osteoactive and supported the mineral crystal deposition. The hemolysis study confirmed the hemocompatibility of the CNFs and cell viability/proliferation sassy using an MTT assay kit showed the proliferative activities of mineralized CNFs. In conclusion, this study revealed that the mineralized CNFs synthesized by the combination of sol-gel and electrospinning techniques were electroactive, osteoactive and biocompatible, which can be considered an effective bone tissue engineering scaffold.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mehdi Azizi
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Masoud Hamidi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Shayan Gholizadeh
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Mahnaz Mohammadpour
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Saeid Salami
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadi Samadian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
5
|
Granel H, Bossard C, Collignon AM, Wauquier F, Lesieur J, Rochefort GY, Jallot E, Lao J, Wittrant Y. Osteogenic Effect of Fisetin Doping in Bioactive Glass/Poly(caprolactone) Hybrid Scaffolds. ACS OMEGA 2022; 7:22279-22290. [PMID: 35811886 PMCID: PMC9260777 DOI: 10.1021/acsomega.2c01109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Treating large bone defects or fragile patients may require enhancing the bone regeneration rate to overcome a weak contribution from the body. This work investigates the osteogenic potential of nutrient fisetin, a flavonoid found in fruits and vegetables, as a doping agent inside the structure of a SiO2-CaO bioactive glass-poly(caprolactone) (BG-PCL) hybrid scaffold. Embedded in the full mass of the BG-PCL hybrid during one-pot synthesis, we demonstrate fisetin to be delivered sustainably; the release follows a first-order kinetics with active fisetin concentration being delivered for more than 1 month (36 days). The biological effect of BG-PCL-fisetin-doped scaffolds (BG-PCL-Fis) has been highlighted by in vitro and in vivo studies. A positive impact is demonstrated on the adhesion and the differentiation of rat primary osteoblasts, without an adverse cytotoxic effect. Implantation in critical-size mouse calvaria defects shows bone remodeling characteristics and remarkable enhancement of bone regeneration for fisetin-doped scaffolds, with the regenerated bone volume being twofold that of nondoped scaffolds and fourfold that of a commercial trabecular bovine bone substitute. Such highly bioactive materials could stand as competitive alternative strategies involving biomaterials loaded with growth factors, the use of the latter being the subject of growing concerns.
Collapse
Affiliation(s)
- Henri Granel
- INRAE,
Human Nutrition Unit (UNH), ECREIN Team, TSA 50400, 28 Place Henri Dunant, Clermont-Ferrand, Auvergne-Rhone-Alpes 63001, France
| | - Cédric Bossard
- Université
Clermont Auvergne, Laboratoire De Physique De Clermont Ferrand, 4 Avenue Blaise Pascal, Clermont-Ferrand, Auvergne-Rhône-Alpes 63001, France
| | - Anne-Margaux Collignon
- Descartes
University of Paris Faculty of Dental Surgery, Laboratoires Pathologies,
Imagerie et Biothérapies Orofaciales,1 Rue Maurice Arnoux, Montrouge, Île-De-France 92120, France
| | - Fabien Wauquier
- INRAE,
Human Nutrition Unit (UNH), ECREIN Team, TSA 50400, 28 Place Henri Dunant, Clermont-Ferrand, Auvergne-Rhone-Alpes 63001, France
| | - Julie Lesieur
- Descartes
University of Paris Faculty of Dental Surgery, Laboratoires Pathologies,
Imagerie et Biothérapies Orofaciales,1 Rue Maurice Arnoux, Montrouge, Île-De-France 92120, France
| | - Gael Y. Rochefort
- Descartes
University of Paris Faculty of Dental Surgery, Laboratoires Pathologies,
Imagerie et Biothérapies Orofaciales,1 Rue Maurice Arnoux, Montrouge, Île-De-France 92120, France
| | - Edouard Jallot
- Université
Clermont Auvergne, Laboratoire De Physique De Clermont Ferrand, 4 Avenue Blaise Pascal, Clermont-Ferrand, Auvergne-Rhône-Alpes 63001, France
| | - Jonathan Lao
- Université
Clermont Auvergne, Laboratoire De Physique De Clermont Ferrand, 4 Avenue Blaise Pascal, Clermont-Ferrand, Auvergne-Rhône-Alpes 63001, France
| | - Yohann Wittrant
- INRAE,
Human Nutrition Unit (UNH), ECREIN Team, TSA 50400, 28 Place Henri Dunant, Clermont-Ferrand, Auvergne-Rhone-Alpes 63001, France
| |
Collapse
|
6
|
Nazarkina ZK, Savostyanova TA, Chelobanov BP, Romanova IV, Simonov PA, Kvon RI, Karpenko AA, Laktionov PP. Activated Carbon for Drug Delivery from Composite Biomaterials: The Effect of Grinding on Sirolimus Binding and Release. Pharmaceutics 2022; 14:pharmaceutics14071386. [PMID: 35890281 PMCID: PMC9325110 DOI: 10.3390/pharmaceutics14071386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/17/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022] Open
Abstract
Activated carbon (AC) could be potentially useful as a drug carrier in fiber polymer scaffolds destined for prolonged drug delivery. To be introduced, AC must be ground into smaller-sized particles to be introduced in scaffolds, as most biocompatible scaffolds consist of fibers with a diameter of less than 1 µm. In this study, the adsorption of sirolimus (SRL) from phosphate-buffered saline (PBS) solution and blood plasma (BP) onto AC of AX-21 type, as well as the release of SRL from AC depending on its fragmentation, were studied. Two-stage grinding of the AC, first with a ball mill, and then with a bead mill, was performed. Grinding with a bead mill was performed either in water or in polyvinylpyrrolidone to prevent aggregation of AC particles. Dynamic light scattering and scanning electron microscopy (SEM) demonstrated that the size of the particles obtained after grinding with a ball mill was 100–10,000 nm, and after grinding with a bead mill, 100–300 nm. Adsorption in PBS was significantly higher than in BP for all fractions, and depended on SRL concentration. The fraction obtained after grinding with a ball mill showed maximal SRL adsorption, both in PBS and BP, and slow SRL release, in comparison with other fractions. The 100–300 nm AC fractions were able to adsorb and completely release SRL into BP, in contrast to other fractions, which strongly bound a significant amount of SRL. The data obtained are to be used for controlled SRL delivery, and thus in the modification of drug delivery in biological media.
Collapse
Affiliation(s)
- Zhanna K. Nazarkina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.A.S.); (B.P.C.); (I.V.R.); (P.P.L.)
- Correspondence: ; Tel.: +7-(383)-363-51-44
| | - Tatyana A. Savostyanova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.A.S.); (B.P.C.); (I.V.R.); (P.P.L.)
| | - Boris P. Chelobanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.A.S.); (B.P.C.); (I.V.R.); (P.P.L.)
| | - Irina V. Romanova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.A.S.); (B.P.C.); (I.V.R.); (P.P.L.)
| | - Pavel A. Simonov
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Ren I. Kvon
- Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Andrey A. Karpenko
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia;
| | - Pavel P. Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.A.S.); (B.P.C.); (I.V.R.); (P.P.L.)
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia;
| |
Collapse
|
7
|
Nature-Inspired Effects of Naturally Occurring Trace Element-Doped Hydroxyapatite Combined with Surface Interactions of Mineral-Apatite Single Crystals on Human Fibroblast Behavior. Int J Mol Sci 2022; 23:ijms23020802. [PMID: 35054988 PMCID: PMC8775611 DOI: 10.3390/ijms23020802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/13/2022] Open
Abstract
Innovative engineering design for biologically active hydroxyapatites requires enhancing both mechanical and physical properties, along with biocompatibility, by doping with appropriate chemical elements. Herein, the purpose of this investigation was to evaluate and elucidate the model of naturally occurring hydroxyapatite and the effects of doped trace elements on the function of normal human fibroblasts, representing the main cells of connective tissues. The substrates applied (geological apatites with hexagonal prismatic crystal habit originated from Slyudyanka, Lake Baikal, Russia (GAp) and from Imilchil, The Atlas Mountains, Morocco (YAp)) were prepared from mineral natural apatite with a chemical composition consistent with the building blocks of enamel and enriched with a significant F− content. Materials in the form of powders, extracts and single-crystal plates have been investigated. Moreover, the effects on the function of fibroblasts cultured on the analyzed surfaces in the form of changes in metabolic activity, proliferation and cell morphology were evaluated. Apatite plates were also evaluated for cytotoxicity and immune cell activation capacity. The results suggest that a moderate amount of F− has a positive effect on cell proliferation, whereas an inhibitory effect was attributed to the Cl− concentration. It was found that for (100) GAp plate, fibroblast proliferation was significantly increased, whereas for (001) YAp plate, it was significantly reduced, with no cytotoxic effect and no immune response from macrophages exposed to these materials. The study of the interaction of fibroblasts with apatite crystal surfaces provides a characterization relevant to medical applications and may contribute to the design of biomaterials suitable for medical applications and the evaluation of their bioavailability.
Collapse
|