1
|
Farhana A, Yusuf N, Rasheed Z. Editorial: Cancer genetics and epigenetics: theranostic targets and mechanisms. Front Genet 2024; 15:1446474. [PMID: 39130752 PMCID: PMC11310138 DOI: 10.3389/fgene.2024.1446474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/03/2024] [Indexed: 08/13/2024] Open
Affiliation(s)
- Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Aljouf Province, Saudi Arabia
| | - Nabiha Yusuf
- Department of Dermatology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zafar Rasheed
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Qassim, Saudi Arabia
| |
Collapse
|
2
|
Jung EJ, Kim HJ, Shin SC, Kim GS, Jung JM, Hong SC, Kim CW, Lee WS. β-Lapachone Exerts Anticancer Effects by Downregulating p53, Lys-Acetylated Proteins, TrkA, p38 MAPK, SOD1, Caspase-2, CD44 and NPM in Oxaliplatin-Resistant HCT116 Colorectal Cancer Cells. Int J Mol Sci 2023; 24:9867. [PMID: 37373014 DOI: 10.3390/ijms24129867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
β-lapachone (β-Lap), a topoisomerase inhibitor, is a naturally occurring ortho-naphthoquinone phytochemical and is involved in drug resistance mechanisms. Oxaliplatin (OxPt) is a commonly used chemotherapeutic drug for metastatic colorectal cancer, and OxPt-induced drug resistance remains to be solved to increase chances of successful therapy. To reveal the novel role of β-Lap associated with OxPt resistance, 5 μM OxPt-resistant HCT116 cells (HCT116-OxPt-R) were generated and characterized via hematoxylin staining, a CCK-8 assay and Western blot analysis. HCT116-OxPt-R cells were shown to have OxPt-specific resistance, increased aggresomes, upregulated p53 and downregulated caspase-9 and XIAP. Through signaling explorer antibody array, nucleophosmin (NPM), CD37, Nkx-2.5, SOD1, H2B, calreticulin, p38 MAPK, caspase-2, cadherin-9, MMP23B, ACOT2, Lys-acetylated proteins, COL3A1, TrkA, MPS-1, CD44, ITGA5, claudin-3, parkin and ACTG2 were identified as OxPt-R-related proteins due to a more than two-fold alteration in protein status. Gene ontology analysis suggested that TrkA, Nkx-2.5 and SOD1 were related to certain aggresomes produced in HCT116-OxPt-R cells. Moreover, β-Lap exerted more cytotoxicity and morphological changes in HCT116-OxPt-R cells than in HCT116 cells through the downregulation of p53, Lys-acetylated proteins, TrkA, p38 MAPK, SOD1, caspase-2, CD44 and NPM. Our results indicate that β-Lap could be used as an alternative drug to overcome the upregulated p53-containing OxPt-R caused by various OxPt-containing chemotherapies.
Collapse
Affiliation(s)
- Eun Joo Jung
- Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, 15 Jinju-daero 816 Beon-gil, Jinju 52727, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea
| | - Sung Chul Shin
- Department of Chemistry, Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Gon Sup Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jin-Myung Jung
- Department of Neurosurgery, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea
| | - Soon Chan Hong
- Department of Surgery, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea
| | - Choong Won Kim
- Department of Biochemistry, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea
| | - Won Sup Lee
- Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, 15 Jinju-daero 816 Beon-gil, Jinju 52727, Republic of Korea
| |
Collapse
|
3
|
In silico Prediction of Deleterious Single Nucleotide Polymorphism in S100A4 Metastatic Gene: Potential Early Diagnostic Marker. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:4202623. [PMID: 35965620 PMCID: PMC9357733 DOI: 10.1155/2022/4202623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022]
Abstract
S100A4 protein overexpression has been reported in different types of cancer and plays a key role by interacting with the tumor suppressor protein Tp53. Single nucleotide polymorphisms (SNP) in S100A4 could directly influence the biomolecular interaction with the tumor suppressor protein Tp53 due to their aberrant conformations. Hence, the study was designed to predict the deleterious SNP and its effect on the S100A4 protein structure and function. Twenty-one SNP data sets were screened for nonsynonymous mutations and subsequently subjected to deleterious mutation prediction using different computational tools. The screened deleterious mutations were analyzed for their changes in functionality and their interaction with the tumor suppressor protein Tp53 by protein-protein docking analysis. The structural effects were studied using the 3DMissense mutation tool to estimate the solvation energy and torsion angle of the screened mutations on the predicted structures. In our study, 21 deleterious nonsynonymous mutations were screened, including F72V, E74G, L5P, D25E, N65S, A28V, A8D, S20L, L58P, and K26N were found to be remarkably conserved by exhibiting the interaction either with the EF-hand 1 or EF-hand 2 domain. The solvation and torsion values significantly deviated for the mutant-type structures with S20L, N65S, and F72L mutations and showed a marked reduction in their binding affinity with the Tp53 protein. Hence, these deleterious mutations might serve as prospective targets for diagnosing and developing personalized treatments for cancer and other related diseases.
Collapse
|