1
|
Chen KY, Chan HC, Chan CM. Can Stem Cell Therapy Revolutionize Ocular Disease Treatment? A Critical Review of Preclinical and Clinical Advances. Stem Cell Rev Rep 2025:10.1007/s12015-025-10884-x. [PMID: 40266467 DOI: 10.1007/s12015-025-10884-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2025] [Indexed: 04/24/2025]
Abstract
Stem cell therapy in regenerative medicine has a scope for treating ocular diseases. Stem cell therapy aims to repair damaged tissue and restore vision. The present review focuses on the advancements in stem cell therapies for ocular disorders, their mechanism of action, and clinical applications while addressing some outstanding challenges. Stem cells that include embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), and retinal progenitor cells have regenerative potential for ocular repair. They differentiate into specialized ocular cell types, conduct neuroprotection, and modulate immune responses. It is emphasized in preclinical and clinical studies that stem cell therapy can treat corneal disorders such as limbal stem cell deficiency, retinal diseases like dry age macular degeneration and retinitis pigmentosa, and diabetic retinopathy. Various studies suggested that stem cells have considerable scope in glaucoma treatment by supporting retinal ganglion cell survival and optic nerve regeneration. Advanced approaches such as gene editing, organoid generation, and artificial intelligence enhance these therapies. Effective delivery to target areas, engraftment, orientation, and long-term survival of transplanted cells need optimization. Issues such as immune rejection and tumorigenicity must be addressed. This approach is further hindered by regulatory issues and overly complicated approval processes and trials. Ethical issues related to sourcing embryonic stem cells and patient consent complicate the issue. The cost of manufacturing stem cells and their accessibility are other factors posing potential barriers to widespread application. These regulatory, ethical, and economic issues must be tackled if stem cell treatments are to be made safe, accessible, and effective. Future studies will include refining therapeutic protocols, scaling manufacturing processes, and overcoming socio-economic barriers, eventually improving clinical outcomes.
Collapse
Affiliation(s)
- Kai-Yang Chen
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hoi-Chun Chan
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Chi-Ming Chan
- Department of Ophthalmology, Cardinal Tien Hospital, New Taipei City, Taiwan.
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
2
|
Dallatana A, Cremonesi L, Pezzini F, Fontana G, Innamorati G, Giacomello L. The Placenta as a Source of Human Material for Neuronal Repair. Biomedicines 2024; 12:1567. [PMID: 39062139 PMCID: PMC11275125 DOI: 10.3390/biomedicines12071567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Stem cell therapy has the potential to meet unsolved problems in tissue repair and regeneration, particularly in the neural tissues. However, an optimal source has not yet been found. Growing evidence indicates that positive effects produced in vivo by mesenchymal stem cells (MSCs) can be due not only to their plasticity but also to secreted molecules including extracellular vesicles (EVs) and the extracellular matrix (ECM). Trophic effects produced by MSCs may reveal the key to developing effective tissue-repair strategies, including approaches based on brain implants or other implantable neural electrodes. In this sense, MSCs will become increasingly valuable and needed in the future. The placenta is a temporary organ devoted to protecting and supporting the fetus. At the same time, the placenta represents an abundant and extremely convenient source of MSCs. Nonetheless, placenta-derived MSCs (P-MSCs) remain understudied as compared to MSCs isolated from other sources. This review outlines the limited literature describing the neuroregenerative effects of P-MSC-derived biomaterials and advocates for exploiting the potential of this untapped source for human regenerative therapies.
Collapse
Affiliation(s)
| | | | | | | | - Giulio Innamorati
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37134 Verona, Italy; (A.D.); (L.C.); (F.P.); (G.F.); (L.G.)
| | | |
Collapse
|
3
|
Scarabosio A, Surico PL, Tereshenko V, Singh RB, Salati C, Spadea L, Caputo G, Parodi PC, Gagliano C, Winograd JM, Zeppieri M. Whole-eye transplantation: Current challenges and future perspectives. World J Transplant 2024; 14:95009. [PMID: 38947970 PMCID: PMC11212585 DOI: 10.5500/wjt.v14.i2.95009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/24/2024] [Accepted: 05/15/2024] [Indexed: 06/13/2024] Open
Abstract
Whole-eye transplantation emerges as a frontier in ophthalmology, promising a transformative approach to irreversible blindness. Despite advancements, formidable challenges persist. Preservation of donor eye viability post-enucleation necessitates meticulous surgical techniques to optimize retinal integrity and ganglion cell survival. Overcoming the inhibitory milieu of the central nervous system for successful optic nerve regeneration remains elusive, prompting the exploration of neurotrophic support and immunomodulatory interventions. Immunological tolerance, paramount for graft acceptance, confronts the distinctive immunogenicity of ocular tissues, driving research into targeted immunosuppression strategies. Ethical and legal considerations underscore the necessity for stringent standards and ethical frameworks. Interdisciplinary collaboration and ongoing research endeavors are imperative to navigate these complexities. Biomaterials, stem cell therapies, and precision immunomodulation represent promising avenues in this pursuit. Ultimately, the aim of this review is to critically assess the current landscape of whole-eye transplantation, elucidating the challenges and advancements while delineating future directions for research and clinical practice. Through concerted efforts, whole-eye transplantation stands to revolutionize ophthalmic care, offering hope for restored vision and enhanced quality of life for those afflicted with blindness.
Collapse
Affiliation(s)
- Anna Scarabosio
- Department of Plastic Surgery, University Hospital of Udine, Udine 33100, Italy
- Department of Plastic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Pier Luigi Surico
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, United States
| | - Vlad Tereshenko
- Department of Plastic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Rohan Bir Singh
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, United States
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00142, Italy
| | - Glenda Caputo
- Department of Plastic Surgery, University Hospital of Udine, Udine 33100, Italy
| | - Pier Camillo Parodi
- Department of Plastic Surgery, University Hospital of Udine, Udine 33100, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna "Kore", Enna 94100, Italy
- Eye Clinic Catania University San Marco Hospital, Viale Carlo Azeglio Ciampi 95121 Catania, Italy
| | - Jonathan M Winograd
- Department of Plastic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| |
Collapse
|
4
|
Hu BY, Xin M, Chen M, Yu P, Zeng LZ. Mesenchymal stem cells for repairing glaucomatous optic nerve. Int J Ophthalmol 2024; 17:748-760. [PMID: 38638254 PMCID: PMC10988077 DOI: 10.18240/ijo.2024.04.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/09/2024] [Indexed: 04/20/2024] Open
Abstract
Glaucoma is a common and complex neurodegenerative disease characterized by progressive loss of retinal ganglion cells (RGCs) and axons. Currently, there is no effective method to address the cause of RGCs degeneration. However, studies on neuroprotective strategies for optic neuropathy have increased in recent years. Cell replacement and neuroprotection are major strategies for treating glaucoma and optic neuropathy. Regenerative medicine research into the repair of optic nerve damage using stem cells has received considerable attention. Stem cells possess the potential for multidirectional differentiation abilities and are capable of producing RGC-friendly microenvironments through paracrine effects. This article reviews a thorough researches of recent advances and approaches in stem cell repair of optic nerve injury, raising the controversies and unresolved issues surrounding the future of stem cells.
Collapse
Affiliation(s)
- Bai-Yu Hu
- Eye School of Chengdu University of TCM, Chengdu 610000, Sichuan Province, China
| | - Mei Xin
- Department of Ophthalmology, Chengdu First People's Hospital, Chengdu 610095, Sichuan Province, China
| | - Ming Chen
- Department of Ophthalmology, Chengdu First People's Hospital, Chengdu 610095, Sichuan Province, China
| | - Ping Yu
- Eye School of Chengdu University of TCM, Chengdu 610000, Sichuan Province, China
| | - Liu-Zhi Zeng
- Department of Ophthalmology, Chengdu First People's Hospital, Chengdu 610095, Sichuan Province, China
| |
Collapse
|
5
|
Yang L, Liu SC, Liu YY, Zhu FQ, Xiong MJ, Hu DX, Zhang WJ. Therapeutic role of neural stem cells in neurological diseases. Front Bioeng Biotechnol 2024; 12:1329712. [PMID: 38515621 PMCID: PMC10955145 DOI: 10.3389/fbioe.2024.1329712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
The failure of endogenous repair is the main feature of neurological diseases that cannot recover the damaged tissue and the resulting dysfunction. Currently, the range of treatment options for neurological diseases is limited, and the approved drugs are used to treat neurological diseases, but the therapeutic effect is still not ideal. In recent years, different studies have revealed that neural stem cells (NSCs) have made exciting achievements in the treatment of neurological diseases. NSCs have the potential of self-renewal and differentiation, which shows great foreground as the replacement therapy of endogenous cells in neurological diseases, which broadens a new way of cell therapy. The biological functions of NSCs in the repair of nerve injury include neuroprotection, promoting axonal regeneration and remyelination, secretion of neurotrophic factors, immune regulation, and improve the inflammatory microenvironment of nerve injury. All these reveal that NSCs play an important role in improving the progression of neurological diseases. Therefore, it is of great significance to better understand the functional role of NSCs in the treatment of neurological diseases. In view of this, we comprehensively discussed the application and value of NSCs in neurological diseases as well as the existing problems and challenges.
Collapse
Affiliation(s)
- Ling Yang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
- Department of Physical Examination, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Si-Cheng Liu
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Yi-Yi Liu
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Fu-Qi Zhu
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Mei-Juan Xiong
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
6
|
Sun Y, Chen D, Dai T, Yu Z, Xie H, Wang X, Zhang W. Cell-free fat extract promotes axon regeneration and retinal ganglion cells survival in traumatic optic neuropathy. Front Cell Neurosci 2024; 18:1344853. [PMID: 38515790 PMCID: PMC10954833 DOI: 10.3389/fncel.2024.1344853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
Injuries to axons within the central nervous system (CNS) pose a substantial clinical challenge due to their limited regenerative capacity. This study investigates the therapeutic potential of Cell-free fat extract (CEFFE) in CNS injury. CEFFE was injected intravitreally after the optic nerve was crushed. Two weeks post-injury, quantification of regenerated axons and survival rates of retinal ganglion cells (RGCs) were performed. Subsequently, comprehensive gene ontology (GO) an-notation elucidated the cellular origins and functional attributes of CEFFE components. Molecular mechanisms underlying CEFFE's therapeutic effects were explored through Western blotting (WB). Additionally, levels of inflammatory factors within CEFFE were determined using enzyme-linked immunosorbent assay (ELISA), and histological staining of microglia was conducted to assess its impact on neuroinflammation. CEFFE demonstrated a significant capacity to promote axon re-generation and enhance RGCs survival. GO annotation revealed the involvement of 146 proteins within CEFFE in axonogenesis and neurogenesis. WB analysis unveiled the multifaceted pathways through which CEFFE exerts its therapeutic effects. Elevated levels of inflammatory factors were detected through ELISA, and CEFFE exhibited a modulatory effect on microglial activation in the retinal tissue following optic nerve crush (ONC). The present study highlights the therapeutic promise of CEFFE in the management of CNS injuries, exemplified by its ability to foster axon regeneration and improve RGCs survival.
Collapse
Affiliation(s)
- Yiyu Sun
- Department of Wound Reconstructive Surgery, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Di Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Tao Dai
- Department of Wound Reconstructive Surgery, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Ziyou Yu
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Xie
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiangsheng Wang
- Department of Plastic and Reconstructive Surgery, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Wenjie Zhang
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Porcino C, Mhalhel K, Briglia M, Cometa M, Guerrera MC, Germanà PG, Montalbano G, Levanti M, Laurà R, Abbate F, Germanà A, Aragona M. Neurotrophins and Trk Neurotrophin Receptors in the Retina of Adult Killifish ( Nothobranchius guentheri). Int J Mol Sci 2024; 25:2732. [PMID: 38473977 DOI: 10.3390/ijms25052732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Specific subpopulations of neurons in nerve and sensory systems must be developed and maintained, and this is accomplished in significant part by neurotrophins (NTs) and the signaling receptors on which they act, called tyrosine protein kinase receptors (Trks). The neurotrophins-tyrosine protein kinase receptors (NTs/Trks) system is involved in sensory organ regulation, including the visual system. An NTs/Trks system alteration is associated with neurodegeneration related to aging and diseases, including retinal pathologies. An emergent model in the field of translational medicine, for instance, in aging study, is the annual killifish belonging to the Nothobranchius genus, thanks to its short lifespan. Members of this genus, such as Nothobranchius guentheri, and humans share a similar retinal stratigraphy. Nevertheless, according to the authors' knowledge, the occurrence and distribution of the NTs/Trks system in the retina of N. guentheri has never been investigated before. Therefore, the present study aimed to localize neurotrophin BDNF, NGF, and NT-3 and TrkA, TrkB, and TrkC receptors in the N. guentheri retina using the immunofluorescence method. The present investigation demonstrates, for the first time, the occurrence of the NTs/Trks system in N. guentheri retina and, consequently, the potential key role of these proteins in the biology and survival of the retinal cells.
Collapse
Affiliation(s)
- Caterina Porcino
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Kamel Mhalhel
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Marilena Briglia
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Marzio Cometa
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Maria Cristina Guerrera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Patrizia Germana Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Maria Levanti
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Rosaria Laurà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Francesco Abbate
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Marialuisa Aragona
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
8
|
Del Negro I, Pauletto G, Verriello L, Spadea L, Salati C, Ius T, Zeppieri M. Uncovering the Genetics and Physiology behind Optic Neuritis. Genes (Basel) 2023; 14:2192. [PMID: 38137014 PMCID: PMC10742654 DOI: 10.3390/genes14122192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Optic neuritis (ON) is an inflammatory condition affecting the optic nerve, leading to vision impairment and potential vision loss. This manuscript aims to provide a comprehensive review of the current understanding of ON, including its definition, epidemiology, physiology, genetics, molecular pathways, therapy, ongoing clinical studies, and future perspectives. ON is characterized by inflammation of the optic nerve, often resulting from an autoimmune response. Epidemiological studies have shown a higher incidence in females and an association with certain genetic factors. The physiology of ON involves an immune-mediated attack on the myelin sheath surrounding the optic nerve, leading to demyelination and subsequent impairment of nerve signal transmission. This inflammatory process involves various molecular pathways, including the activation of immune cells and the release of pro-inflammatory cytokines. Genetic factors play a significant role in the susceptibility to ON. Several genes involved in immune regulation and myelin maintenance have been implicated in the disease pathogenesis. Understanding the genetic basis can provide insights into disease mechanisms and potential therapeutic targets. Therapy for ON focuses on reducing inflammation and promoting nerve regeneration. Future perspectives involve personalized medicine approaches based on genetic profiling, regenerative therapies to repair damaged myelin, and the development of neuroprotective strategies. Advancements in understanding molecular pathways, genetics, and diagnostic tools offer new opportunities for targeted therapies and improved patient outcomes in the future.
Collapse
Affiliation(s)
- Ilaria Del Negro
- Clinical Neurology Unit, Head-Neck and Neurosciences Department, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy;
| | - Giada Pauletto
- Neurology Unit, Head-Neck and Neurosciences Department, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy; (G.P.)
| | - Lorenzo Verriello
- Neurology Unit, Head-Neck and Neurosciences Department, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy; (G.P.)
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, “Sapienza” University of Rome, 00142 Rome, Italy
| | - Carlo Salati
- Department of Ophthalmology, Head-Neck and Neurosciences Department, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy
| | - Tamara Ius
- Neurosurgery Unit, Head-Neck and Neurosciences Department, Santa Maria della Misericordia University Hospital of Udine, 33100 Udine, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, Head-Neck and Neurosciences Department, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy
| |
Collapse
|
9
|
Shin HA, Park M, Lee HJ, Duong VA, Kim HM, Hwang DY, Lee H, Lew H. Unveiling Neuroprotection and Regeneration Mechanisms in Optic Nerve Injury: Insight from Neural Progenitor Cell Therapy with Focus on Vps35 and Syntaxin12. Cells 2023; 12:2412. [PMID: 37830626 PMCID: PMC10572010 DOI: 10.3390/cells12192412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
Axonal degeneration resulting from optic nerve damage can lead to the progressive death of retinal ganglion cells (RGCs), culminating in irreversible vision loss. We contrasted two methods for inducing optic nerve damage: optic nerve compression (ONCo) and optic nerve crush (ONCr). These were assessed for their respective merits in simulating traumatic optic neuropathies and neurodegeneration. We also administered neural progenitor cells (NPCs) into the subtenon space to validate their potential in mitigating optic nerve damage. Our findings indicate that both ONCo and ONCr successfully induced optic nerve damage, as shown by increases in ischemia and expression of genes linked to neuronal regeneration. Post NPC injection, recovery in the expression of neuronal regeneration-related genes was more pronounced in the ONCo model than in the ONCr model, while inflammation-related gene expression saw a better recovery in ONCr. In addition, the proteomic analysis of R28 cells in hypoxic conditions identified Vps35 and Syntaxin12 genes. Vps35 preserved the mitochondrial function in ONCo, while Syntaxin12 appeared to restrain inflammation via the Wnt/β-catenin signaling pathway in ONCr. NPCs managed to restore damaged RGCs by elevating neuroprotection factors and controlling inflammation through mitochondrial homeostasis and Wnt/β-catenin signaling in hypoxia-injured R28 cells and in both animal models. Our results suggest that ischemic injury and crush injury cause optic nerve damage via different mechanisms, which can be effectively simulated using ONCo and ONCr, respectively. Moreover, cell-based therapies such as NPCs may offer promising avenues for treating various optic neuropathies, including ischemic and crush injuries.
Collapse
Affiliation(s)
- Hyun-Ah Shin
- Department of Biomedical Science, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea; (H.-A.S.); (H.-M.K.); (D.-Y.H.)
| | - Mira Park
- Department of Ophthalmology, CHA Medical Center, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea;
| | - Hey Jin Lee
- CHA Advanced Research Institute, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea;
| | - Van-An Duong
- Gachon Institute of Pharmaceutical Sciences, Gachon College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea; (V.-A.D.); (H.L.)
| | - Hyun-Mun Kim
- Department of Biomedical Science, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea; (H.-A.S.); (H.-M.K.); (D.-Y.H.)
| | - Dong-Youn Hwang
- Department of Biomedical Science, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea; (H.-A.S.); (H.-M.K.); (D.-Y.H.)
- Department of Microbiology, School of Medicine, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea
| | - Hookeun Lee
- Gachon Institute of Pharmaceutical Sciences, Gachon College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea; (V.-A.D.); (H.L.)
| | - Helen Lew
- Department of Ophthalmology, CHA Medical Center, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea;
| |
Collapse
|
10
|
Zhang WJ, Liu SC, Ming LG, Yu JW, Zuo C, Hu DX, Luo HL, Zhang Q. Potential role of Schwann cells in neuropathic pain. Eur J Pharmacol 2023; 956:175955. [PMID: 37541365 DOI: 10.1016/j.ejphar.2023.175955] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Neuropathic pain (NPP) is a common syndrome associated with most forms of disease, which poses a serious threat to human health. NPP may persist even after the nociceptive stimulation is eliminated, and treatment is extremely challenging in such cases. Schwann cells (SCs) form the myelin sheaths around neuronal axons and play a crucial role in neural information transmission. SCs can secrete trophic factors to nourish and protect axons, and can further secrete pain-related factors to induce pain. SCs may be activated by peripheral nerve injury, triggering the transformation of myelinated and non-myelinated SCs into cell phenotypes that specifically promote repair. These differentiated SCs provide necessary signals and spatial clues for survival, axonal regeneration, and nerve regeneration of damaged neurons. They can further change the microenvironment around the regions of nerve injury, and relieve the pain by repairing the injured nerve. Herein, we provide a comprehensive overview of the biological characteristics of SCs, discuss the relationship between SCs and nerve injury, and explore the potential mechanism of SCs and the occurrence of NPP. Moreover, we summarize the feasible strategies of SCs in the treatment of NPP, and attempt to elucidate the deficiencies and defects of SCs in the treatment of NPP.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Si-Cheng Liu
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Li-Guo Ming
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Jian-Wen Yu
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Cheng Zuo
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Hong-Liang Luo
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| | - Qiao Zhang
- Orthopedics Department, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| |
Collapse
|
11
|
Lu B, Avalos P, Svendsen S, Zhang C, Nocito L, Jones MK, Pieplow C, Saylor J, Ghiam S, Block A, Fernandez M, Ljubimov AV, Small K, Liao D, Svendsen CN, Wang S. GMP-grade human neural progenitors delivered subretinally protect vision in rat model of retinal degeneration and survive in minipigs. J Transl Med 2023; 21:650. [PMID: 37743503 PMCID: PMC10519102 DOI: 10.1186/s12967-023-04501-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/02/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND Stem cell products are increasingly entering early stage clinical trials for treating retinal degeneration. The field is learning from experience about comparability of cells proposed for preclinical and clinical use. Without this, preclinical data supporting translation to a clinical study might not adequately reflect the performance of subsequent clinical-grade cells in patients. METHODS Research-grade human neural progenitor cells (hNPC) and clinical-grade hNPC (termed CNS10-NPC) were injected into the subretinal space of the Royal College of Surgeons (RCS) rat, a rodent model of retinal degeneration such as retinitis pigmentosa. An investigational new drug (IND)-enabling study with CNS10-NPC was performed in the same rodent model. Finally, surgical methodology for subretinal cell delivery in the clinic was optimized in a large animal model with Yucatan minipigs. RESULTS Both research-grade hNPC and clinical-grade hNPC can survive and provide functional and morphological protection in a dose-dependent fashion in RCS rats and the optimal cell dose was defined and used in IND-enabling studies. Grafted CNS10-NPC migrated from the injection site without differentiation into retinal cell phenotypes. Additionally, CNS10-NPC showed long-term survival, safety and efficacy in a good laboratory practice (GLP) toxicity and tumorigenicity study, with no observed cell overgrowth even at the maximum deliverable dose. Finally, using a large animal model with the Yucatan minipig, which has an eye size comparable to the human, we optimized the surgical methodology for subretinal cell delivery in the clinic. CONCLUSIONS These extensive studies supported an approved IND and the translation of CNS10-NPC to an ongoing Phase 1/2a clinical trial (NCT04284293) for the treatment of retinitis pigmentosa.
Collapse
Affiliation(s)
- Bin Lu
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Pablo Avalos
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Soshana Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Changqing Zhang
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Laura Nocito
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Melissa K Jones
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Cosmo Pieplow
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Joshua Saylor
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Sean Ghiam
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Amanda Block
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Michael Fernandez
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Alexander V Ljubimov
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Kent Small
- Macula& Retina Institute, Glendale, CA, 91203, USA
| | - David Liao
- Retina Vitreous Associates Medical Group, Beverly Hills, CA, 90211, USA
| | - Clive N Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Shaomei Wang
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
12
|
Roh EJ, Kim DS, Kim JH, Lim CS, Choi H, Kwon SY, Park SY, Kim JY, Kim HM, Hwang DY, Han DK, Han I. Multimodal therapy strategy based on a bioactive hydrogel for repair of spinal cord injury. Biomaterials 2023; 299:122160. [PMID: 37209541 DOI: 10.1016/j.biomaterials.2023.122160] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/13/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
Traumatic spinal cord injury results in permanent and serious neurological impairment, but there is no effective treatment yet. Tissue engineering approaches offer great potential for the treatment of SCI, but spinal cord complexity poses great challenges. In this study, the composite scaffold consists of a hyaluronic acid-based hydrogel, decellularized brain matrix (DBM), and bioactive compounds such as polydeoxyribonucleotide (PDRN), tumor necrosis factor-α/interferon-γ primed mesenchymal stem cell-derived extracellular vesicles (TI-EVs), and human embryonic stem cell-derived neural progenitor cells (NPC). The composite scaffold showed significant effects on regenerative prosses including angiogenesis, anti-inflammation, anti-apoptosis, and neural differentiation. In addition, the composite scaffold (DBM/PDRN/TI-EV/NPC@Gel) induced an effective spinal cord regeneration in a rat spinal cord transection model. Therefore, this multimodal approach using an integrated bioactive scaffold coupled with biochemical cues from PDRN and TI-EVs could be used as an advanced tissue engineering platform for spinal cord regeneration.
Collapse
Affiliation(s)
- Eun Ji Roh
- Department of Neurosurgery CHA University School of Medicine, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea; Department of Biomedical Science CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Da-Seul Kim
- Department of Biomedical Science CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea; School of Integrative Engineering Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Jun Hyuk Kim
- Department of Biomedical Science CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Chang Su Lim
- Department of Neurosurgery CHA University School of Medicine, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Hyemin Choi
- Department of Neurosurgery CHA University School of Medicine, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Su Yeon Kwon
- Department of Neurosurgery CHA University School of Medicine, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - So-Yeon Park
- Department of Biomedical Science CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea; Division of Biotechnology College of Life Sciences and Biotechnology Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jun Yong Kim
- Department of Biomedical Science CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Hyun-Mun Kim
- Department of Biomedical Science CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Dong-Youn Hwang
- Department of Biomedical Science CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea.
| | - Inbo Han
- Department of Neurosurgery CHA University School of Medicine, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea.
| |
Collapse
|
13
|
McCartan R, Gratkowski A, Browning M, Hahn-Townsend C, Ferguson S, Morin A, Bachmeier C, Pearson A, Brown L, Mullan M, Crawford F, Tzekov R, Mouzon B. Human amnionic progenitor cell secretome mitigates the consequence of traumatic optic neuropathy in a mouse model. Mol Ther Methods Clin Dev 2023; 29:303-318. [PMID: 37359418 PMCID: PMC10285248 DOI: 10.1016/j.omtm.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/12/2023] [Indexed: 06/28/2023]
Abstract
Traumatic optic neuropathy (TON) is a condition in which acute injury to the optic nerve from direct or indirect trauma results in vision loss. The most common cause of TON is indirect injury to the optic nerve caused by concussive forces that are transmitted to the optic nerve. TON occurs in up to 5% of closed-head trauma patients and there is currently no known effective treatment. One potential treatment option for TON is ST266, a cell-free biological solution containing the secretome of amnion-derived multipotent progenitor (AMP) cells. We investigated the efficacy of intranasal ST266 in a mouse model of TON induced by blunt head trauma. Injured mice treated with a 10-day regimen of ST266 showed an improvement in spatial memory and learning, a significant preservation of retinal ganglion cells, and a decrease in neuropathological markers in the optic nerve, optic tract, and dorsal lateral geniculate nucleus. ST266 treatment effectively downregulated the NLRP3 inflammasome-mediated neuroinflammation pathway after blunt trauma. Overall, treatment with ST266 was shown to improve functional and pathological outcomes in a mouse model of TON, warranting future exploration of ST266 as a cell-free therapeutic candidate for testing in all optic neuropathies.
Collapse
Affiliation(s)
- Robyn McCartan
- Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | - Scott Ferguson
- Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA
| | - Alexander Morin
- Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA
| | - Corbin Bachmeier
- Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA
- Bay Pines Veterans’ Hospital, Saint Petersburg, FL 33708, USA
| | - Andrew Pearson
- Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA
| | - Larry Brown
- Noveome Biotherapeutics, Inc., Pittsburgh, PA 15219, USA
| | - Michael Mullan
- Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA
| | - Fiona Crawford
- Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA
- James A. Haley Veterans’ Hospital, Tampa, FL 33612, USA
| | | | - Benoit Mouzon
- Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA
- James A. Haley Veterans’ Hospital, Tampa, FL 33612, USA
| |
Collapse
|