1
|
Du X, Zheng M, Zhang H, Qiu Y, Ji F, Nie Z, Xu H, Li X, Wu S, Wang Z, Xing F, Xia Y. New application of a dye-decolorizing peroxidase immobilized on magnetic nanoparticles for efficient simultaneous degradation of two mycotoxins. Food Chem 2025; 463:141341. [PMID: 39307048 DOI: 10.1016/j.foodchem.2024.141341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/06/2024] [Accepted: 09/15/2024] [Indexed: 11/06/2024]
Abstract
Nowadays the enzymatic approaches are the most promising strategies for mycotoxins detoxification in food stuffs. Herein, the dye-decolorizing peroxidase RhDypB from Rhodococcus jostii was studied for its ability to degrade two mycotoxins in both free and the immobilized enzyme forms. This enzyme was recombinantly expressed and purified, while Fe3O4 nanoparticles were prepared and modified with chitosan as the immobilization carrier. The immobilized enzyme Fe3O4@CS@RhDypB demonstrated degradation rate of 85.61 % toward aflatoxin B1, while it was firstly found to be able to degrade zearalenone with the rate of 86.52 %, at pH 4.0 on 30 °C. The degradation products were identified as aflatoxin Q1 and 15-OH-ZEN respectively. After 5 cycles of reuse, Fe3O4@CS@RhDypB still exhibited degradation rates of 38.50 % and 49.76 % toward the mycotoxins, indicating its high reusability. Moreover, Fe3O4@CS@RhDypB exhibited excellent stability after 10 days of storage. This work identified potential applications of nanoparticle-immobilized enzyme for biodegradation of mycotoxins in food industry.
Collapse
Affiliation(s)
- Xinling Du
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mumin Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Han Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yangyu Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fuchun Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zishen Nie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Huidong Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaoxuan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fuguo Xing
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yu Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Kalkan Ö, Kantamneni S, Brings L, Han H, Bean R, Mancuso AP, Koua FHM. Heterologous expression, purification and structural features of native Dictyostelium discoideum dye-decolorizing peroxidase bound to a natively incorporated heme. Front Chem 2023; 11:1220543. [PMID: 37593106 PMCID: PMC10427876 DOI: 10.3389/fchem.2023.1220543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023] Open
Abstract
The Dictyostelium discoideum dye-decolorizing peroxidase (DdDyP) is a newly discovered peroxidase, which belongs to a unique class of heme peroxidase family that lacks homology to the known members of plant peroxidase superfamily. DdDyP catalyzes the H2O2-dependent oxidation of a wide-spectrum of substrates ranging from polycyclic dyes to lignin biomass, holding promise for potential industrial and biotechnological applications. To study the molecular mechanism of DdDyP, highly pure and functional protein with a natively incorporated heme is required, however, obtaining a functional DyP-type peroxidase with a natively bound heme is challenging and often requires addition of expensive biosynthesis precursors. Alternatively, a heme in vitro reconstitution approach followed by a chromatographic purification step to remove the excess heme is often used. Here, we show that expressing the DdDyP peroxidase in ×2 YT enriched medium at low temperature (20°C), without adding heme supplement or biosynthetic precursors, allows for a correct native incorporation of heme into the apo-protein, giving rise to a stable protein with a strong Soret peak at 402 nm. Further, we crystallized and determined the native structure of DdDyP at a resolution of 1.95 Å, which verifies the correct heme binding and its geometry. The structural analysis also reveals a binding of two water molecules at the distal site of heme plane bridging the catalytic residues (Arg239 and Asp149) of the GXXDG motif to the heme-Fe(III) via hydrogen bonds. Our results provide new insights into the geometry of native DdDyP active site and its implication on DyP catalysis.
Collapse
Affiliation(s)
- Özlem Kalkan
- European XFEL GmbH, Schenefeld, Schleswig-Holstein, Germany
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | | | - Lea Brings
- European XFEL GmbH, Schenefeld, Schleswig-Holstein, Germany
| | - Huijong Han
- European XFEL GmbH, Schenefeld, Schleswig-Holstein, Germany
| | - Richard Bean
- European XFEL GmbH, Schenefeld, Schleswig-Holstein, Germany
| | - Adrian P. Mancuso
- European XFEL GmbH, Schenefeld, Schleswig-Holstein, Germany
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, United Kingdom
| | | |
Collapse
|
3
|
Scocozza M, Vieyra F, Battaglini F, Martins LO, Murgida DH. Electrochemical Actuation of a DyP Peroxidase: A Facile Method for Drastic Improvement of the Catalytic Performance. ACS Catal 2023; 13:7437-7449. [PMID: 37288089 PMCID: PMC10243304 DOI: 10.1021/acscatal.3c01530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/20/2023] [Indexed: 06/09/2023]
Abstract
Dye decolorizing peroxidases (DyP) have attracted interest for applications such as dye-containing wastewater remediation and biomass processing. So far, efforts to improve operational pH ranges, activities, and stabilities have focused on site-directed mutagenesis and directed evolution strategies. Here, we show that the performance of the DyP from Bacillus subtilis can be drastically boosted without the need for complex molecular biology procedures by simply activating the enzyme electrochemically in the absence of externally added H2O2. Under these conditions, the enzyme shows specific activities toward a variety of chemically different substrates that are significantly higher than in its canonical operation. Moreover, it presents much broader pH activity profiles with the maxima shifted toward neutral to alkaline. We also show that the enzyme can be successfully immobilized on biocompatible electrodes. When actuated electrochemically, the enzymatic electrodes have two orders of magnitude higher turnover numbers than with the standard H2O2-dependent operation and preserve about 30% of the initial electrocatalytic activity after 5 days of operation-storage cycles.
Collapse
Affiliation(s)
- Magalí
F. Scocozza
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto
de Química Física de Los Materiales, Medio Ambiente
y Energía (INQUIMAE), CONICET-Universidad
de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Francisco Vieyra
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto
de Química Física de Los Materiales, Medio Ambiente
y Energía (INQUIMAE), CONICET-Universidad
de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Fernando Battaglini
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto
de Química Física de Los Materiales, Medio Ambiente
y Energía (INQUIMAE), CONICET-Universidad
de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Ligia O. Martins
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
| | - Daniel H. Murgida
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto
de Química Física de Los Materiales, Medio Ambiente
y Energía (INQUIMAE), CONICET-Universidad
de Buenos Aires, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
4
|
Silva D, Rodrigues F, Lorena C, Borges PT, Martins LO. Biocatalysis for biorefineries: The case of dye-decolorizing peroxidases. Biotechnol Adv 2023; 65:108153. [PMID: 37044267 DOI: 10.1016/j.biotechadv.2023.108153] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 04/14/2023]
Abstract
Dye-decolorizing Peroxidases (DyPs) are heme-containing enzymes in fungi and bacteria that catalyze the reduction of hydrogen peroxide to water with concomitant oxidation of various substrates, including anthraquinone dyes, lignin-related phenolic and non-phenolic compounds, and metal ions. Investigation of DyPs has shed new light on peroxidases, one of the most extensively studied families of oxidoreductases; still, details of their microbial physiological role and catalytic mechanisms remain to be fully disclosed. They display a distinctive ferredoxin-like fold encompassing anti-parallel β-sheets and α-helices, and long conserved loops surround the heme pocket with a role in catalysis and stability. A tunnel routes H2O2 to the heme pocket, whereas binding sites for the reducing substrates are in cavities near the heme or close to distal aromatic residues at the surface. Variations in reactions, the role of catalytic residues, and mechanisms were observed among different classes of DyP. They were hypothetically related to the presence or absence of distal H2O molecules in the heme pocket. The engineering of DyPs for improved properties directed their biotechnological applications, primarily centered on treating textile effluents and degradation of other hazardous pollutants, to fields such as biosensors and valorization of lignin, the most abundant renewable aromatic polymer. In this review, we track recent research contributions that furthered our understanding of the activity, stability, and structural properties of DyPs and their biotechnological applications. Overall, the study of DyP-type peroxidases has significant implications for environmental sustainability and the development of new bio-based products and materials with improved end-of-life options via biodegradation and chemical recyclability, fostering the transition to a sustainable bio-based industry in the circular economy realm.
Collapse
Affiliation(s)
- Diogo Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - F Rodrigues
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Constança Lorena
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Patrícia T Borges
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Lígia O Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
5
|
Chen J, Liu X, Zheng G, Feng W, Wang P, Gao J, Liu J, Wang M, Wang Q. Detection of Glucose Based on Noble Metal Nanozymes: Mechanism, Activity Regulation, and Enantioselective Recognition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205924. [PMID: 36509680 DOI: 10.1002/smll.202205924] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Glucose monitoring is essential to evaluate the degree of glucose metabolism disorders. The enzymatic determination has been the most widely used method in glucose detection because of its high efficiency, accuracy, and sensitivity. Noble metal nanomaterials (NMs, i.e., Au, Ag, Pt, and Pd), inheriting their excellent electronic, optical, and enzyme-like properties, are classified as noble metal nanozymes (NMNZs). As the NMNZs are often involved in two series of reactions, the oxidation of glucose and the chromogenic reaction of peroxide, here the chemical mechanism by employing NMNZs with glucose oxidase (GOx) and peroxidase (POD) mimicking activities is briefly summarized first. Subsequently, the regulation strategies of the GOx-like, POD-like and tandem enzyme-like activities of NMNZs are presented in detail, including the materials, size, morphology, composition, and the reaction condition of the representative NMs. In addition, in order to further mimic the enantioselectivity of enzyme, the design of NMNZs with enantioselective recognition of d-glucose and l-glucose by using different chiral compounds (DNA, amino acids, and cyclodextrins) and molecular imprinting is further described in this review. Finally, the feasible solutions to the existing challenges and a vision for future development possibilities are discussed.
Collapse
Affiliation(s)
- Jiaqi Chen
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| | - Xiaoyang Liu
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| | - Guangchao Zheng
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450001, China
| | - Wei Feng
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| | - Pan Wang
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| | - Jian Gao
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| | - Jianbo Liu
- College of Opto-electronic Engineering, Zaozhuang University, Zaozhuang, 277160, China
| | - Mingzhe Wang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Qingyuan Wang
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| |
Collapse
|
6
|
Borges PT, Silva D, Silva TF, Brissos V, Cañellas M, Lucas MF, Masgrau L, Melo EP, Machuqueiro M, Frazão C, Martins LO. Unveiling molecular details behind improved activity at neutral to alkaline pH of an engineered DyP-type peroxidase. Comput Struct Biotechnol J 2022; 20:3899-3910. [PMID: 35950185 PMCID: PMC9334217 DOI: 10.1016/j.csbj.2022.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 01/21/2023] Open
Abstract
DyP-type peroxidases (DyPs) are microbial enzymes that catalyze the oxidation of a wide range of substrates, including synthetic dyes, lignin-derived compounds, and metals, such as Mn2+ and Fe2+, and have enormous biotechnological potential in biorefineries. However, many questions on the molecular basis of enzyme function and stability remain unanswered. In this work, high-resolution structures of PpDyP wild-type and two engineered variants (6E10 and 29E4) generated by directed evolution were obtained. The X-ray crystal structures revealed the typical ferredoxin-like folds, with three heme access pathways, two tunnels, and one cavity, limited by three long loops including catalytic residues. Variant 6E10 displays significantly increased loops' flexibility that favors function over stability: despite the considerably higher catalytic efficiency, this variant shows poorer protein stability compared to wild-type and 29E4 variants. Constant-pH MD simulations revealed a more positively charged microenvironment near the heme pocket of variant 6E10, particularly in the neutral to alkaline pH range. This microenvironment affects enzyme activity by modulating the pK a of essential residues in the heme vicinity and should account for variant 6E10 improved activity at pH 7-8 compared to the wild-type and 29E4 that show optimal enzymatic activity close to pH 4. Our findings shed light on the structure-function relationships of DyPs at the molecular level, including their pH-dependent conformational plasticity. These are essential for understanding and engineering the catalytic properties of DyPs for future biotechnological applications.
Collapse
Affiliation(s)
- Patrícia T. Borges
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Diogo Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Tomás F.D. Silva
- BioISI – Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Vânia Brissos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Marina Cañellas
- Zymvol Biomodeling, Carrer Roc Boronat, 117, 08018 Barcelona, Spain
| | | | - Laura Masgrau
- Zymvol Biomodeling, Carrer Roc Boronat, 117, 08018 Barcelona, Spain,Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Eduardo P. Melo
- Centro de Ciências do Mar, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Miguel Machuqueiro
- BioISI – Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Carlos Frazão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Lígia O. Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal,Corresponding author.
| |
Collapse
|