1
|
Kumari N, Mishra GP, Dikshit HK, Gupta S, Roy A, Sinha SK, Mishra DC, Das S, Kumar RR, Nair RM, Aski M. Identification of quantitative trait loci (QTLs) regulating leaf SPAD value and trichome density in mungbean ( Vigna radiata L.) using genotyping-by-sequencing (GBS) approach. PeerJ 2024; 12:e16722. [PMID: 38406271 PMCID: PMC10893866 DOI: 10.7717/peerj.16722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/04/2023] [Indexed: 02/27/2024] Open
Abstract
Quantitative trait loci (QTL) mapping is used for the precise localization of genomic regions regulating various traits in plants. Two major QTLs regulating Soil Plant Analysis Development (SPAD) value (qSPAD-7-1) and trichome density (qTric-7-2) in mungbean were identified using recombinant inbred line (RIL) populations (PMR-1×Pusa Baisakhi) on chromosome 7. Functional analysis of QTL region identified 35 candidate genes for SPAD value (16 No) and trichome (19 No) traits. The candidate genes regulating trichome density on the dorsal leaf surface of the mungbean include VRADI07G24840, VRADI07G17780, and VRADI07G15650, which encodes for ZFP6, TFs bHLH DNA-binding superfamily protein, and MYB102, respectively. Also, candidate genes having vital roles in chlorophyll biosynthesis are VRADIO7G29860, VRADIO7G29450, and VRADIO7G28520, which encodes for s-adenosyl-L-methionine, FTSHI1 protein, and CRS2-associated factor, respectively. The findings unfolded the opportunity for the development of customized genotypes having high SPAD value and high trichome density having a possible role in yield and mungbean yellow vein mosaic India virus (MYMIV) resistance in mungbean.
Collapse
Affiliation(s)
- Nikki Kumari
- Genetics, Indian Agricultural Research Institute, New Delhi, Delhi, India
| | | | | | - Soma Gupta
- Genetics, Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - Anirban Roy
- Plant Pathology, Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - Subodh Kumar Sinha
- Biotechnology, National Institute of Plant Biotechnology, New Delhi, Delhi, India
| | - Dwijesh C. Mishra
- Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, New Delhi, Delhi, India
| | - Shouvik Das
- Genetics, Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - Ranjeet R. Kumar
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, Delhi, India
| | | | - Muraleedhar Aski
- Genetics, Indian Agricultural Research Institute, New Delhi, Delhi, India
| |
Collapse
|
2
|
Zhang Y, Tian L, Lu C. Chloroplast gene expression: Recent advances and perspectives. PLANT COMMUNICATIONS 2023; 4:100611. [PMID: 37147800 PMCID: PMC10504595 DOI: 10.1016/j.xplc.2023.100611] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/11/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023]
Abstract
Chloroplasts evolved from an ancient cyanobacterial endosymbiont more than 1.5 billion years ago. During subsequent coevolution with the nuclear genome, the chloroplast genome has remained independent, albeit strongly reduced, with its own transcriptional machinery and distinct features, such as chloroplast-specific innovations in gene expression and complicated post-transcriptional processing. Light activates the expression of chloroplast genes via mechanisms that optimize photosynthesis, minimize photodamage, and prioritize energy investments. Over the past few years, studies have moved from describing phases of chloroplast gene expression to exploring the underlying mechanisms. In this review, we focus on recent advances and emerging principles that govern chloroplast gene expression in land plants. We discuss engineering of pentatricopeptide repeat proteins and its biotechnological effects on chloroplast RNA research; new techniques for characterizing the molecular mechanisms of chloroplast gene expression; and important aspects of chloroplast gene expression for improving crop yield and stress tolerance. We also discuss biological and mechanistic questions that remain to be answered in the future.
Collapse
Affiliation(s)
- Yi Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Lin Tian
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Congming Lu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
3
|
An H, Ke X, Li L, Liu Y, Yuan S, Wang Q, Hou X, Zhao J. ALBINO EMBRYO AND SEEDLING is required for RNA splicing and chloroplast homeostasis in Arabidopsis. PLANT PHYSIOLOGY 2023; 193:483-501. [PMID: 37311175 DOI: 10.1093/plphys/kiad341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 06/15/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins form a large protein family and have diverse functions in plant development. Here, we identified an ALBINO EMBRYO AND SEEDLING (AES) gene that encodes a P-type PPR protein expressed in various tissues, especially the young leaves of Arabidopsis (Arabidopsis thaliana). Its null mutant aes exhibited a collapsed chloroplast membrane system, reduced pigment content and photosynthetic activity, decreased transcript levels of PEP (plastid-encoded polymerase)-dependent chloroplast genes, and defective RNA splicing. Further work revealed that AES could directly bind to psbB-psbT, psbH-petB, rps8-rpl36, clpP, ycf3, and ndhA in vivo and in vitro and that the splicing efficiencies of these genes and the expression levels of ycf3, ndhA, and cis-tron psbB-psbT-psbH-petB-petD decreased dramatically, leading to defective PSI, PSII, and Cyt b6f in aes. Moreover, AES could be transported into the chloroplast stroma via the TOC-TIC channel with the assistance of Tic110 and cpSRP54 and may recruit HCF244, SOT1, and CAF1 to participate in the target RNA process. These findings suggested that AES is an essential protein for the assembly of photosynthetic complexes, providing insights into the splicing of psbB operon (psbB-psbT-psbH-petB-petD), ycf3, and ndhA, as well as maintaining chloroplast homeostasis.
Collapse
Affiliation(s)
- Hongqiang An
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Xiaolong Ke
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Lu Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Yantong Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Sihui Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Qiuyu Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Xin Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Jie Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| |
Collapse
|
4
|
Small I, Melonek J, Bohne AV, Nickelsen J, Schmitz-Linneweber C. Plant organellar RNA maturation. THE PLANT CELL 2023; 35:1727-1751. [PMID: 36807982 PMCID: PMC10226603 DOI: 10.1093/plcell/koad049] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 05/30/2023]
Abstract
Plant organellar RNA metabolism is run by a multitude of nucleus-encoded RNA-binding proteins (RBPs) that control RNA stability, processing, and degradation. In chloroplasts and mitochondria, these post-transcriptional processes are vital for the production of a small number of essential components of the photosynthetic and respiratory machinery-and consequently for organellar biogenesis and plant survival. Many organellar RBPs have been functionally assigned to individual steps in RNA maturation, often specific to selected transcripts. While the catalog of factors identified is ever-growing, our knowledge of how they achieve their functions mechanistically is far from complete. This review summarizes the current knowledge of plant organellar RNA metabolism taking an RBP-centric approach and focusing on mechanistic aspects of RBP functions and the kinetics of the processes they are involved in.
Collapse
Affiliation(s)
- Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | - Joanna Melonek
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | | | - Jörg Nickelsen
- Department of Molecular Plant Sciences, LMU Munich, 82152 Martinsried, Germany
| | | |
Collapse
|
5
|
Sugita M. An Overview of Pentatricopeptide Repeat (PPR) Proteins in the Moss Physcomitrium patens and Their Role in Organellar Gene Expression. PLANTS 2022; 11:plants11172279. [PMID: 36079663 PMCID: PMC9459714 DOI: 10.3390/plants11172279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022]
Abstract
Pentatricopeptide repeat (PPR) proteins are one type of helical repeat protein that are widespread in eukaryotes. In particular, there are several hundred PPR members in flowering plants. The majority of PPR proteins are localized in the plastids and mitochondria, where they play a crucial role in various aspects of RNA metabolism at the post-transcriptional and translational steps during gene expression. Among the early land plants, the moss Physcomitrium (formerly Physcomitrella) patens has at least 107 PPR protein-encoding genes, but most of their functions remain unclear. To elucidate the functions of PPR proteins, a reverse-genetics approach has been applied to P. patens. To date, the molecular functions of 22 PPR proteins were identified as essential factors required for either mRNA processing and stabilization, RNA splicing, or RNA editing. This review examines the P. patens PPR gene family and their current functional characterization. Similarities and a diversity of functions of PPR proteins between P. patens and flowering plants and their roles in the post-transcriptional regulation of organellar gene expression are discussed.
Collapse
Affiliation(s)
- Mamoru Sugita
- Graduate School of Informatics, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
6
|
Suzuki R, Sugita C, Aoki S, Sugita M. Physcomitrium patens pentatricopeptide repeat protein PpPPR_32 is involved in the accumulation of psaC mRNA encoding the iron sulfur protein of photosystem I. Genes Cells 2022; 27:293-304. [PMID: 35194890 DOI: 10.1111/gtc.12928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/01/2022]
Abstract
Pentatricopeptide repeat (PPR) proteins are involved in RNA metabolism and also play a role in posttranscriptional regulation during plant organellar gene expression. Although a hundred of PPR proteins exist in the moss Physcomitrium patens, their functions are not fully understood. Here, we report the function of P-class PPR protein PpPPR_32 in P. patens. A transient expression assay using green fluorescent protein demonstrated that the N-terminal region of PpPPR_32 functions as a chloroplast-targeting transit peptide, indicating that PpPPR_32 is localized in chloroplasts. PpPPR_32 knockout (KO) mutants grew autotrophically but with reduced protonema growth and the poor formation of photosystem I (PSI) complexes. Quantitative real-time reverse transcription-polymerase chain reaction and RNA gel blot hybridization analyses revealed a significant reduction in the transcript level of the psaC gene encoding the iron sulfur protein of PSI but no alteration to the transcript levels of other PSI genes. This suggests that PpPPR_32 is specifically involved in the expression level of the psaC gene. Our results indicate that PpPPR_32 is essential for the accumulation of psaC transcript and PSI complexes.
Collapse
Affiliation(s)
- Ryo Suzuki
- Center for Gene Research, Nagoya University Chikusa-ku, Nagoya, Japan.,Graduate School of Informatics, Nagoya University Chikusa-ku, Nagoya, Japan
| | - Chieko Sugita
- Center for Gene Research, Nagoya University Chikusa-ku, Nagoya, Japan.,Graduate School of Informatics, Nagoya University Chikusa-ku, Nagoya, Japan
| | - Setsuyuki Aoki
- Graduate School of Informatics, Nagoya University Chikusa-ku, Nagoya, Japan
| | - Mamoru Sugita
- Center for Gene Research, Nagoya University Chikusa-ku, Nagoya, Japan.,Graduate School of Informatics, Nagoya University Chikusa-ku, Nagoya, Japan
| |
Collapse
|