1
|
Dallinger R, Pedrini‐Martha V, Burdisso ML, Capdevila M, Palacios O, Albalat R. Experimental recombining of repetitive motifs leads to large functional metallothioneins and demonstrates their modular evolvability potential. Protein Sci 2025; 34:e5247. [PMID: 39673460 PMCID: PMC11645667 DOI: 10.1002/pro.5247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/04/2024] [Accepted: 11/23/2024] [Indexed: 12/16/2024]
Abstract
Protein modularity is acknowledged for promoting the emergence of new protein variants via domain rearrangements. Metallothioneins (MTs) offer an excellent model system for experimentally examining the consequences of domain rearrangements due to the possibility to assess the functional properties of native and artificially created variants using spectroscopic methods and metal tolerance assays. In this study, we have investigated the functional properties of AbiMT4 from the snail Alinda biplicata (Gastropoda, Mollusca), a large MT comprising 10 putative β domains (β39β1), alongside four artificially designed variants differing in domain number, type, or order. Our findings reveal that AbiMT4 is a cadmium-selective protein with a high metal-binding capacity, characterized by structurally and functionally independent domains repeated in tandem along the protein. Our results indicate that due to its modular organization, AbiMT4 remains functional even when the number, type, and order of the domains are significantly altered. Furthermore, we demonstrate that the metal-binding properties of AbiMT4 are not dictated by the overall architecture of the protein but primarily arise from the properties of each individual domain. Using MTs as example, this work provides empirical evidence that domain rearrangements are an effective strategy for exploring new viable sequences and creating novel protein variants subject to adaptive selection. Thus, our study highlights the importance of the modular structure of proteins, as increasing their functional flexibility enhances their evolvability. Additionally, our work demonstrates a simple way to design and model new proteins for predefined functions.
Collapse
Affiliation(s)
- Reinhard Dallinger
- Institute of Zoology and Center of Molecular Biosciences InnsbruckUniversity of InnsbruckInnsbruckAustria
| | - Veronika Pedrini‐Martha
- Institute of Zoology and Center of Molecular Biosciences InnsbruckUniversity of InnsbruckInnsbruckAustria
| | - Maria Lucia Burdisso
- Departament de Genètica, Microbiologia i Estadística, Facultat de BiologiaUniversitat de Barcelona (UB)BarcelonaSpain
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI‐CONICET)Universidad Nacional de RosarioRosarioArgentina
| | - Mercè Capdevila
- Departament de Química, Facultat de CiènciesUniversitat Autònoma de Barcelona (UAB)Cerdanyola del VallèsSpain
| | - Oscar Palacios
- Departament de Química, Facultat de CiènciesUniversitat Autònoma de Barcelona (UAB)Cerdanyola del VallèsSpain
| | - Ricard Albalat
- Departament de Genètica, Microbiologia i Estadística, Facultat de BiologiaUniversitat de Barcelona (UB)BarcelonaSpain
- Institut de Recerca de la Biodiversitat (IRBio)Universitat de Barcelona (UB)BarcelonaSpain
| |
Collapse
|
2
|
Liu P, Baumann C, Streuli D, Zerbe O. Mechanistic insights into uptake, transfer and exchange of metal ions by the three-metal clusters of a metalloprotein. Protein Sci 2024; 33:e5186. [PMID: 39446023 PMCID: PMC11500472 DOI: 10.1002/pro.5186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/19/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
Metallothioneins (MTs) are small proteins that coordinate d-block metal ions in sulfur-metal clusters to control metal ion concentrations within the cell. Here we study metal cluster formation in the MT of the periwinkle Littorina littorea (LlMT) by nuclear magnetic resonance (NMR). We demonstrate that the three Cd2+ ions in each domain are taken up highly cooperatively, that is, in an all-or-none fashion, with a four- to six-fold higher affinity for the C-terminal domain. During the transfer of metal ions from Cd2+-loaded MT to apo MT, Cd2+ is most efficiently transferred from the metalated protein to the apo C-terminal domain. This behavior might be connected to unique structural motifs in the C-terminal domain, such as two double-CXC motifs and an increased proportion of positively charged residues. In Cd2+/Zn2+ metal exchange experiments, the N-terminal domain displayed the most efficient inter-molecular metal exchange. Amide hydrogen exchange reveals fewer protected amides for the N-terminal domain, suggesting the structure might more easily "open up" to facilitate metal exchange. Experiments with a physical separation of donor and acceptor species demonstrate that metal exchange and transfer require protein-protein contacts. These findings provide insights into the mechanism of metal uptake and metal transfer, which are important processes during metal detoxification in snail MTs.
Collapse
Affiliation(s)
- Pengfei Liu
- Department of ChemistryUniversity of ZurichZürichSwitzerland
| | | | - David Streuli
- Department of ChemistryUniversity of ZurichZürichSwitzerland
- Institute of Biological ChemistryAcademia SinicaTaipei CityTaiwan
| | - Oliver Zerbe
- Department of ChemistryUniversity of ZurichZürichSwitzerland
| |
Collapse
|
3
|
Dallinger R. Metals and metallothionein evolution in snails: a contribution to the concept of metal-specific functionality from an animal model group. Biometals 2024; 37:671-696. [PMID: 38416244 PMCID: PMC11101346 DOI: 10.1007/s10534-024-00584-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/10/2024] [Indexed: 02/29/2024]
Abstract
This is a critical review of what we know so far about the evolution of metallothioneins (MTs) in Gastropoda (snails, whelks, limpets and slugs), an important class of molluscs with over 90,000 known species. Particular attention will be paid to the evolution of snail MTs in relation to the role of some metallic trace elements (cadmium, zinc and copper) and their interaction with MTs, also compared to MTs from other animal phyla. The article also highlights the important distinction, yet close relationship, between the structural and metal-selective binding properties of gastropod MTs and their physiological functionality in the living organism. It appears that in the course of the evolution of Gastropoda, the trace metal cadmium (Cd) must have played an essential role in the development of Cd-selective MT variants. It is shown how the structures and Cd-selective binding properties in the basal gastropod clades have evolved by testing and optimizing different combinations of ancestral and novel MT domains, and how some of these domains have become established in modern and recent gastropod clades. In this context, the question of how adaptation to new habitats and lifestyles has affected the original MT traits in different gastropod lineages will also be addressed. The 3D structures and their metal binding preferences will be highlighted exemplarily in MTs of modern littorinid and helicid snails. Finally, the importance of the different metal requirements and pathways in snail tissues and cells for the shaping and functionality of the respective MT isoforms will be shown.
Collapse
|
4
|
Valsecchi R, Baumann C, Lila A, Zerbe O. Evolution of Cd2+ and Cu+ binding in Helix pomatia metallothioneins. Metallomics 2023; 15:mfad057. [PMID: 37738453 PMCID: PMC10548783 DOI: 10.1093/mtomcs/mfad057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
Metallothioneins (MTs) are small proteins present in all kingdoms of life. Their high cysteine content enables them to bind metal ions, such as Zn2+, Cd2+, and Cu+, providing means for detoxification and metal homeostasis. Three MT isoforms with distinct metal binding preferences are present in the Roman Snail Helix pomatia. Here, we use nuclear magnetic resonance (NMR) to follow the evolution of Cd2+ and Cu+ binding from the reconstructed ancestral Stylommatophora MT to the three H. pomatia MT (HpMT) isoforms. Information obtained from [15N,1H]-HSQC spectra and T2 relaxation times are combined to describe the conformational stability of the MT-metal complexes. A well-behaved MT-metal complex adopts a unique structure and does not undergo additional conformational exchange. The ancestor to all three HpMTs forms conformationally stable Cd2+ complexes and closely resembles the Cd2+-specific HpCdMT isoform, suggesting a role in Cd2+ detoxification for the ancestral protein. All Cu+-MT complexes, including the Cu+-specific HpCuMT isoform, undergo a considerable amount of conformational exchange. The unspecific HpCd/CuMT and the Cu+-specific HpCuMT isoforms form Cu+ complexes with comparable characteristics. It is possible to follow how Cd2+ and Cu+ binding changed throughout evolution. Interestingly, Cu+ binding improved independently in the lineages leading to the unspecific and the Cu+-specific HpMT isoforms. C-terminal domains are generally less capable of coordinating the non-cognate metal ion than N-terminal domains, indicating a higher level of specialization of the C-domain. Our findings provide new insights into snail MT evolution, helping to understand the interplay between biological function and structural features toward a comprehensive understanding of metal preference.
Collapse
Affiliation(s)
- Renato Valsecchi
- Department of Chemistry, University of Zurich, 8057 Zurich, Winterthurerstrasse 190, Switzerland
| | - Christian Baumann
- Department of Chemistry, University of Zurich, 8057 Zurich, Winterthurerstrasse 190, Switzerland
| | - Ardit Lila
- Department of Chemistry, University of Zurich, 8057 Zurich, Winterthurerstrasse 190, Switzerland
| | - Oliver Zerbe
- Department of Chemistry, University of Zurich, 8057 Zurich, Winterthurerstrasse 190, Switzerland
| |
Collapse
|
5
|
García-Risco M, Calatayud S, Pedrini-Martha V, Albalat R, Palacios Ò, Capdevila M, Dallinger R. A de novo evolved domain improves the cadmium detoxification capacity of limpet metallothioneins. Sci Rep 2023; 13:8895. [PMID: 37264073 PMCID: PMC10235030 DOI: 10.1038/s41598-023-35786-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023] Open
Abstract
Metallothioneins (MTs) constitute an important family of metal binding proteins. Mollusk MTs, in particular, have been used as model systems to better understand the evolution of their metal binding features and functional adaptation. In the present study two recombinantly produced MTs, LgiMT1 and LgiMT2, and their de novo evolved γ domain, of the marine limpet Lottia gigantea, were analyzed by electronic spectroscopy and mass spectrometry. Both MT proteins, as well as their γ domains, exhibit a strong binding specificity for Cd(II), but not for Zn(II) or Cu(I). The LgiMTs' γ domain renders an MII4(SCys)10 cluster with an increased Cd stoichiometry (binding 4 instead of 3 Cd2+ ions), representing a novel structural element in the world of MTs, probably featuring an adamantane 3D structure. This cluster significantly improves the Cd(II)-binding performance of the full length proteins and thus contributes to the particularly high Cd coping capacity observed in free-living limpets.
Collapse
Affiliation(s)
- Mario García-Risco
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Sara Calatayud
- Departament de Genètica, Facultat de Biologia, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Veronika Pedrini-Martha
- Institute of Zoology, Center of Molecular Biosciences, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Ricard Albalat
- Departament de Genètica, Facultat de Biologia, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Òscar Palacios
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Mercè Capdevila
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.
| | - Reinhard Dallinger
- Institute of Zoology, Center of Molecular Biosciences, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria.
| |
Collapse
|
6
|
Calatayud S, Garcia-Risco M, Pedrini-Martha V, Niederwanger M, Dallinger R, Palacios Ò, Capdevila M, Albalat R. The Modular Architecture of Metallothioneins Facilitates Domain Rearrangements and Contributes to Their Evolvability in Metal-Accumulating Mollusks. Int J Mol Sci 2022; 23:15824. [PMID: 36555472 PMCID: PMC9781358 DOI: 10.3390/ijms232415824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Protein domains are independent structural and functional modules that can rearrange to create new proteins. While the evolution of multidomain proteins through the shuffling of different preexisting domains has been well documented, the evolution of domain repeat proteins and the origin of new domains are less understood. Metallothioneins (MTs) provide a good case study considering that they consist of metal-binding domain repeats, some of them with a likely de novo origin. In mollusks, for instance, most MTs are bidomain proteins that arose by lineage-specific rearrangements between six putative domains: α, β1, β2, β3, γ and δ. Some domains have been characterized in bivalves and gastropods, but nothing is known about the MTs and their domains of other Mollusca classes. To fill this gap, we investigated the metal-binding features of NpoMT1 of Nautilus pompilius (Cephalopoda class) and FcaMT1 of Falcidens caudatus (Caudofoveata class). Interestingly, whereas NpoMT1 consists of α and β1 domains and has a prototypical Cd2+ preference, FcaMT1 has a singular preference for Zn2+ ions and a distinct domain composition, including a new Caudofoveata-specific δ domain. Overall, our results suggest that the modular architecture of MTs has contributed to MT evolution during mollusk diversification, and exemplify how modularity increases MT evolvability.
Collapse
Affiliation(s)
- Sara Calatayud
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Mario Garcia-Risco
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Spain
| | - Veronika Pedrini-Martha
- Center for Molecular Biosciences Innsbruck (CMBI), Department of Zoology, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Michael Niederwanger
- Center for Molecular Biosciences Innsbruck (CMBI), Department of Zoology, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Reinhard Dallinger
- Center for Molecular Biosciences Innsbruck (CMBI), Department of Zoology, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Òscar Palacios
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Spain
| | - Mercè Capdevila
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Spain
| | - Ricard Albalat
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, E-08028 Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, E-08028 Barcelona, Spain
| |
Collapse
|
7
|
García-Risco M, González A, Calatayud S, Lopez-Jaramillo FJ, Pedrini-Martha V, Albalat R, Dallinger R, Dominguez-Vera JM, Palacios Ò, Capdevila M. Metal-dependent glycosylation in recombinant metallothioneins. Chem Commun (Camb) 2022; 58:13755-13758. [PMID: 36416731 DOI: 10.1039/d2cc05589a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We show for the first time glycosylation of recombinant metallothioneins (MTs) produced in E. coli. Interestingly, our results show that the glycosylation level of the recombinant MTs is inversely proportional to the degree of protein structuration, and reflects their different metal preferences.
Collapse
Affiliation(s)
- Mario García-Risco
- Department of Chemistry, Universitat Autònoma de Barcelona, Cerdanyola del Vallès (E-08193), Spain.
| | - Ana González
- Department of Inorganic Chemistry and Biotechnology Institute, University of Granada, Granada (E-18071), Spain.
| | - Sara Calatayud
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona (E-08028), Spain
| | - Francisco J Lopez-Jaramillo
- Department of Organic Chemistry and Biotechnology Institute, University of Granada, Granada (E-18071), Spain
| | - Veronika Pedrini-Martha
- Institute of Zoology and Center of Molecular Biosciences, University of Innsbruck, Innsbruck (A-60210), Austria
| | - Ricard Albalat
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona (E-08028), Spain.,Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona (E-08028), Spain
| | - Reinhard Dallinger
- Institute of Zoology and Center of Molecular Biosciences, University of Innsbruck, Innsbruck (A-60210), Austria
| | - José M Dominguez-Vera
- Department of Inorganic Chemistry and Biotechnology Institute, University of Granada, Granada (E-18071), Spain.
| | - Òscar Palacios
- Department of Chemistry, Universitat Autònoma de Barcelona, Cerdanyola del Vallès (E-08193), Spain.
| | - Mercè Capdevila
- Department of Chemistry, Universitat Autònoma de Barcelona, Cerdanyola del Vallès (E-08193), Spain.
| |
Collapse
|
8
|
Chen Z, Lu Q, Wang J, Cao X, Wang K, Wang Y, Wu Y, Yang Z. The function of omega-3 polyunsaturated fatty acids in response to cadmium exposure. Front Immunol 2022; 13:1023999. [PMID: 36248838 PMCID: PMC9558127 DOI: 10.3389/fimmu.2022.1023999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Throughout history, pollution has become a part of our daily life with the improvement of life quality and the advancement of industry and heavy industry. In recent years, the adverse effects of heavy metals, such as cadmium (Cd), on human health have been widely discussed, particularly on the immune system. Here, this review summarizes the available evidence on how Cd exposure may affect health. By analyzing the general manifestations of inflammation caused by Cd exposure, we find that the role of omega-3 (n-3) polyunsaturated fatty acids (PUFAs) in vivo can counteract Cd-induced harm. Additionally, we elucidate the effects of n-3 PUFAs on the immune system, and analyze their prophylactic and therapeutic effects on Cd exposure. Overall, this review highlights the role of n-3 PUFAs in the pathological changes induced by Cd exposure. Although n-3 PUFAs remain to be verified whether they can be used as therapeutic agents, as rehabilitation therapy, supplementation with n-3 PUFAs is reliable and effective.
Collapse
Affiliation(s)
- Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Qinyue Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jiacheng Wang
- College of Medical, Yangzhou University, Yangzhou, China
| | - Xiang Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kun Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yuhao Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yanni Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
- *Correspondence: Zhangping Yang,
| |
Collapse
|