1
|
Slominski RM, Chander R, Jetten AM, Slominski AT. Neuro-immuno-endocrinology of the skin: how environment regulates body homeostasis. Nat Rev Endocrinol 2025:10.1038/s41574-025-01107-x. [PMID: 40263492 DOI: 10.1038/s41574-025-01107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/24/2025] [Indexed: 04/24/2025]
Abstract
The skin, including the hypodermis, is the largest organ of the body. The epidermis, the uppermost layer, is in direct contact with the environment and is exposed to environmental stressors, including solar radiation and biological, chemical and physical factors. These environmental factors trigger local responses within the skin that modulate homeostasis on both the cutaneous and systemic levels. Using mediators in common with brain pathways, immune and neuroendocrine systems within the skin regulate these responses to activate various signal transduction pathways and influence the systemic endocrine and immune systems in a context-dependent manner. This skin neuro-immuno-endocrine system is compartmentalized through the formation of epidermal, dermal, hypodermal and adnexal regulatory units. These units can act separately or in concert to preserve skin integrity, allow for adaptation to a changing environment and prevent the development of pathological processes. Through activation of peripheral nerve endings, the release of neurotransmitters, hormones, neuropeptides, and cytokines and/or chemokines into the circulation, or by priming circulating and resident immune cells, this system affects central coordinating centres and global homeostasis, thus adjusting the body's homeostasis and allostasis to optimally respond to the changing environment.
Collapse
Affiliation(s)
- Radomir M Slominski
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Raman Chander
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anton M Jetten
- Cell Biology Section, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, USA.
- Veteran Administration Medical Center, Birmingham, AL, USA.
| |
Collapse
|
2
|
AbdElneam AI, Al-Dhubaibi MS, Bahaj SS, Mohammed GF, Atef LM. Assessment of miR-19b-3p, miR-182-5p, and miR-155-5p expression and its relation. Arch Dermatol Res 2025; 317:619. [PMID: 40119951 DOI: 10.1007/s00403-025-04043-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 03/25/2025]
Abstract
Alopecia areata (AA) is an autoimmune disorder characterized by non-scarring hair loss. Despite the growing understanding of its immune-related pathogenesis, biomarkers for early diagnosis and disease severity assessment remain limited. Recent studies have suggested that microRNAs (miRNAs) play a crucial role in regulating immune responses and inflammation in autoimmune diseases. This study aimed to investigate the expression levels of three miRNAs, miR-19b-3p, miR-182-5p, and miR-155-5p, in AA patients and their potential as diagnostic markers and indicators of disease severity. A total of 67 AA patients and 62 healthy controls were included in this case-control study. The severity of AA was evaluated using the Severity of Alopecia Tool (SALT) score, categorizing patients into mild, moderate, and severe groups. Plasma miRNA extraction was performed using the Direct-zol™ RNA MiniPrep kit, and qRT-PCR analysis was conducted to quantify the expression levels of miR-19b-3p, miR-182-5p, and miR-155-5p. Diagnostic accuracy was assessed using Receiver Operating Characteristic (ROC) curve analysis, and correlation analysis was performed to examine the relationship between miRNA expression and disease severity. The results revealed that the expression of miR-19b-3p, miR-182-5p, and miR-155-5p was significantly higher in AA patients compared to healthy controls (p = 0.001 for all three miRNAs). ROC curve analysis demonstrated high diagnostic accuracy, with AUC values of 0.99 for miR-19b-3p, 0.95 for miR-182-5p, and 0.97 for miR-155-5p. These miRNAs showed high sensitivity and specificity, indicating their strong potential as diagnostic biomarkers. Moreover, correlation analysis revealed a significant association between miR-155-5p expression and the severity of AA (p < 0.001), suggesting its potential as a marker of disease progression. This study highlights the significant upregulation of miR-19b-3p, miR-182-5p, and miR-155-5p in AA patients, indicating their potential as minimally invasive diagnostic markers. Furthermore, the correlation between miRNA expression and disease severity provides valuable insights into the molecular mechanisms underlying AA. These findings suggest that miRNAs, particularly miR-155-5p, may serve as promising biomarkers for diagnosing and monitoring the progression of AA, potentially aiding in the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ahmed Ibrahim AbdElneam
- Department of Clinical Biochemistry, Department of Basic Medical Sciences, College of Medicine, Shaqra University, Dawadmi, Saudi Arabia
- Molecular Genetics and Enzymology Department, Human Genetics and Genome Research Institute, National Research Center, 33 El Bohouth St. (Former El Tahrir St.), Dokki 12622, Cairo, Egypt
| | | | - Saleh Salem Bahaj
- Department of Microbiology and Immunology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen
| | - Ghada Farouk Mohammed
- Department of Dermatology, Venereology, and Sexology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Lina Mohammed Atef
- Department of Dermatology, Venereology, and Sexology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
3
|
Sun L, Gang X, Li F, Guo W, Cui M, Wang G. Effects of Growth Hormone on Osteoarthritis Development. Horm Metab Res 2024; 56:761-769. [PMID: 39510098 DOI: 10.1055/a-2411-9344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Osteoarthritis (OA), a chronic joint disease characterized by primary or secondary degeneration of articular cartilage and bone dysplasia, is associated with various risk factors and is the leading cause of musculoskeletal pain and disability, severely impacting the quality of life. Growth hormone (GH), secreted by the anterior pituitary gland, is essential in mediating the growth and development of bone and cartilage. Reportedly, osteoarthritis increases, and the growth hormone decreases with age. A negative correlation between GH and OA suggests that GH may be related to the occurrence and development of OA. Considering that abnormal growth hormone levels can lead to many diseases related to bone growth, we focus on the relationship between GH and OA. In this review, we will explain the effects of GH on the growth and deficiency of bone and cartilage based on the local pathological changes of osteoarthritis. In addition, the potential feasibility of treating OA with GH will be further explored and summarized.
Collapse
Affiliation(s)
- Lin Sun
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Fei Li
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Weiying Guo
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Mengzhao Cui
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Zhang Y, Tang Q, Zeng B, Wang F, Luo M, Huang P, Chen L, Wang H. Dendrobium officinale polysaccharide promotes angiogenesis as well as follicle regeneration and hair growth through activation of the WNT signaling pathway. Regen Ther 2024; 26:114-123. [PMID: 38883148 PMCID: PMC11176956 DOI: 10.1016/j.reth.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/10/2024] [Accepted: 04/25/2024] [Indexed: 06/18/2024] Open
Abstract
Introduction Hair loss is one of the common clinical conditions in modern society. Although it is not a serious disease that threatens human life, it brings great mental stress and psychological burden to patients. This study investigated the role of dendrobium officinale polysaccharide (DOP) in hair follicle regeneration and hair growth and its related mechanisms. Methods After in vitro culture of mouse antennal hair follicles and mouse dermal papilla cells (DPCs), and mouse vascular endothelial cells (MVECs), the effects of DOP upon hair follicles and cells were evaluated using multiple methods. DOP effects were evaluated by measuring tentacle growth, HE staining, immunofluorescence, Western blot, CCK-8, ALP staining, tube formation, scratch test, and Transwell. LDH levels, WNT signaling proteins, and therapeutic mechanisms were also analyzed. Results DOP promoted tentacle hair follicle and DPCs growth in mice and the angiogenic, migratory and invasive capacities of MVECs. Meanwhile, DOP was also capable of enhancing angiogenesis and proliferation-related protein expression. Mechanistically, DOP activated the WNT signaling and promoted the expression level of β-catenin, a pivotal protein of the pathway, and the pathway target proteins Cyclin D1, C-Myc, and LDH activity. The promotional effects of DOP on the biological functions of DPCs and MVECs could be effectively reversed by the WNT signaling pathway inhibitor IWR-1. Conclusion DOP advances hair follicle and hair growth via the activation of the WNT signaling. This finding provides a mechanistic reference and theoretical basis for the clinical use of DOP in treating hair loss.
Collapse
Affiliation(s)
- Yujin Zhang
- Department of Dermatology, The Second Affiliated Hospital, The Domestic First-class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, Hunan 410005, China
| | - Qing Tang
- Department of Dermatology, Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (Affiliated Hospital of Hunan Research Institute of Traditional Chinese Medicin), Changsha, Hunan 410006, China
| | - Bijun Zeng
- Department of Dermatology, The Second Affiliated Hospital, The Domestic First-class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, Hunan 410005, China
| | - Fengjiao Wang
- Department of Dermatology, The Second Affiliated Hospital, The Domestic First-class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, Hunan 410005, China
| | - Meijunzi Luo
- Department of Dermatology, The Second Affiliated Hospital, The Domestic First-class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, Hunan 410005, China
| | - Pan Huang
- Department of Dermatology, The Second Affiliated Hospital, The Domestic First-class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, Hunan 410005, China
| | - Ling Chen
- Department of Dermatology, The Third Hospital of Changsha, Changsha, Hunan 410035, China
| | - Haizhen Wang
- Department of Dermatology, The Second Affiliated Hospital, The Domestic First-class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, Hunan 410005, China
| |
Collapse
|
5
|
张 悦, 汤 炜, 田 卫, 于 湄. [Research progress in regulation of hair growth by dermal adipose tissue]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2024; 38:626-632. [PMID: 38752252 PMCID: PMC11096881 DOI: 10.7507/1002-1892.202402092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/11/2024] [Indexed: 05/18/2024]
Abstract
Objective To summarize the dynamic and synchronized changes between the hair cycle and dermal adipose tissue as well as the impact of dermal adipose tissue on hair growth, and to provide a new research idea for the clinical treatment of hair loss. Methods An extensive review of relevant literature both domestic and international was conducted, analyzing and summarizing the impact of dermal adipose precursor cells, mature dermal adipocytes, and the processes of adipogenesis in dermal adipose tissue on the transition of hair cycle phases. Results Dermal adipose tissue is anatomically adjacent to hair follicles and closely related to the changes in the hair cycle. The proliferation and differentiation of dermal adipose precursor cells promote the transition of hair cycle from telogen to anagen, while mature adipocytes can accelerate the transition from anagen to catagen of the hair cycle by expressing signaling molecules, with adipogenesis in dermal adipose tissue and hair cycle transition signaling coexistence. Conclusion Dermal adipose tissue affects the transition of the hair cycle and regulates hair growth by secreting various signaling molecules. However, the quantity and depth of existing literature are far from sufficient to fully elucidate its prominent role in regulating the hair cycle, and the specific regulatory mechanisms needs to be further studied.
Collapse
Affiliation(s)
- 悦 张
- 四川大学华西口腔医学院 口腔再生医学国家地方联合工程实验室(成都 610041)National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu Sichuan, 610041, P. R. China
- 四川大学华西口腔医院口腔颌面创伤整形外科(成都 610041)Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| | - 炜 汤
- 四川大学华西口腔医学院 口腔再生医学国家地方联合工程实验室(成都 610041)National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| | - 卫东 田
- 四川大学华西口腔医学院 口腔再生医学国家地方联合工程实验室(成都 610041)National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu Sichuan, 610041, P. R. China
- 四川大学华西口腔医院口腔颌面创伤整形外科(成都 610041)Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| | - 湄 于
- 四川大学华西口腔医学院 口腔再生医学国家地方联合工程实验室(成都 610041)National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| |
Collapse
|
6
|
Choi JY, Boo MY, Boo YC. Can Plant Extracts Help Prevent Hair Loss or Promote Hair Growth? A Review Comparing Their Therapeutic Efficacies, Phytochemical Components, and Modulatory Targets. Molecules 2024; 29:2288. [PMID: 38792149 PMCID: PMC11124163 DOI: 10.3390/molecules29102288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
This narrative review aims to examine the therapeutic potential and mechanism of action of plant extracts in preventing and treating alopecia (baldness). We searched and selected research papers on plant extracts related to hair loss, hair growth, or hair regrowth, and comprehensively compared the therapeutic efficacies, phytochemical components, and modulatory targets of plant extracts. These studies showed that various plant extracts increased the survival and proliferation of dermal papilla cells in vitro, enhanced cell proliferation and hair growth in hair follicles ex vivo, and promoted hair growth or regrowth in animal models in vivo. The hair growth-promoting efficacy of several plant extracts was verified in clinical trials. Some phenolic compounds, terpenes and terpenoids, sulfur-containing compounds, and fatty acids were identified as active compounds contained in plant extracts. The pharmacological effects of plant extracts and their active compounds were associated with the promotion of cell survival, cell proliferation, or cell cycle progression, and the upregulation of several growth factors, such as IGF-1, VEGF, HGF, and KGF (FGF-7), leading to the induction and extension of the anagen phase in the hair cycle. Those effects were also associated with the alleviation of oxidative stress, inflammatory response, cellular senescence, or apoptosis, and the downregulation of male hormones and their receptors, preventing the entry into the telogen phase in the hair cycle. Several active plant extracts and phytochemicals stimulated the signaling pathways mediated by protein kinase B (PKB, also called AKT), extracellular signal-regulated kinases (ERK), Wingless and Int-1 (WNT), or sonic hedgehog (SHH), while suppressing other cell signaling pathways mediated by transforming growth factor (TGF)-β or bone morphogenetic protein (BMP). Thus, well-selected plant extracts and their active compounds can have beneficial effects on hair health. It is proposed that the discovery of phytochemicals targeting the aforementioned cellular events and cell signaling pathways will facilitate the development of new targeted therapies for alopecia.
Collapse
Affiliation(s)
- Joon Yong Choi
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea;
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Min Young Boo
- Ppeum Clinic Daegu, 39 Dongseong-ro, Jung-gu, Daegu 41937, Republic of Korea;
| | - Yong Chool Boo
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea;
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Lapivu Co., Ltd., 115 Dongdeok-ro, Jung-gu, Daegu 41940, Republic of Korea
| |
Collapse
|
7
|
Yao M, Zhang YQ. [Clinical application of photobiomodulation in trauma repair and medical aesthetics]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2024; 40:307-313. [PMID: 38664024 DOI: 10.3760/cma.j.cn501225-20240203-00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
In recent years, with the deepening of researches on the molecular biological mechanisms of photobiomodulation (PBM), PBM has gradually been applied in clinical practice, providing effective treatment methods and approaches for various diseases. Compared with traditional photothermal therapy, PBM has the characteristics of good therapeutic effect, almost no adverse reaction, and simple operation, and its clinical efficacy is becoming increasingly significant. This article provides a detailed explanation on the mechanism of PBM, its application characteristics and development trends in trauma repair and medical aesthetics, in order to provide a theoretical basis for the extensively clinical application of this therapy.
Collapse
Affiliation(s)
- M Yao
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Y Q Zhang
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
8
|
Hussain H, Paidas MJ, Rajalakshmi R, Fadel A, Ali M, Chen P, Jayakumar AR. Dermatologic Changes in Experimental Model of Long COVID. Microorganisms 2024; 12:272. [PMID: 38399677 PMCID: PMC10892887 DOI: 10.3390/microorganisms12020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
The coronavirus disease-19 (COVID-19) pandemic, declared in early 2020, has left an indelible mark on global health, with over 7.0 million deaths and persistent challenges. While the pharmaceutical industry raced to develop vaccines, the emergence of mutant severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) strains continues to pose a significant threat. Beyond the immediate concerns, the long-term health repercussions of COVID-19 survivors are garnering attention, particularly due to documented cases of cardiovascular issues, liver dysfunction, pulmonary complications, kidney impairments, and notable neurocognitive deficits. Recent studies have delved into the pathophysiological changes in various organs following post-acute infection with murine hepatitis virus-1 (MHV-1), a coronavirus, in mice. One aspect that stands out is the impact on the skin, a previously underexplored facet of long-term COVID-19 effects. The research reveals significant cutaneous findings during both the acute and long-term phases post-MHV-1 infection, mirroring certain alterations observed in humans post-SARS-CoV-2 infection. In the acute stages, mice exhibited destruction of the epidermal layer, increased hair follicles, extensive collagen deposition in the dermal layer, and hyperplasticity of sebaceous glands. Moreover, the thinning of the panniculus carnosus and adventitial layer was noted, consistent with human studies. A long-term investigation revealed the absence of hair follicles, destruction of adipose tissues, and further damage to the epidermal layer. Remarkably, treatment with a synthetic peptide, SPIKENET (SPK), designed to prevent Spike glycoprotein-1 binding with host receptors and elicit a potent anti-inflammatory response, showed protection against MHV-1 infection. Precisely, SPK treatment restored hair follicle loss in MHV-1 infection, re-architected the epidermal and dermal layers, and successfully overhauled fatty tissue destruction. These promising findings underscore the potential of SPK as a therapeutic intervention to prevent long-term skin alterations initiated by SARS-CoV-2, providing a glimmer of hope in the battle against the lingering effects of the pandemic.
Collapse
Affiliation(s)
- Hussain Hussain
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (H.H.); (R.R.)
- Department of Internal Medicine and Infectious Disease, Larkin Community Hospital, Miami, FL 33143, USA
| | - Michael J. Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (H.H.); (R.R.)
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ramamoorthy Rajalakshmi
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (H.H.); (R.R.)
| | - Aya Fadel
- Department of Internal Medicine, Ocean University Medical Center—Hackensack Meridian Health, Brick Township, NJ 08724, USA;
| | - Misha Ali
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Pingping Chen
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Arumugam R. Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (H.H.); (R.R.)
| |
Collapse
|
9
|
Aboalola D, Aouabdi S, Ramadan M, Alghamdi T, Alsolami M, Malibari D, Alsiary R. An Update on Alopecia and its Association With Thyroid Autoimmune Diseases. TOUCHREVIEWS IN ENDOCRINOLOGY 2023; 19:54-59. [PMID: 38187080 PMCID: PMC10769472 DOI: 10.17925/ee.2023.19.2.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/30/2023] [Indexed: 01/09/2024]
Abstract
Alopecia is comorbid with several illnesses, including various autoimmune conditions such as thyroid disease. Leukocyte-mediated inflammation of hair follicles in alopecia was first described over a century ago. However, the high prevalence of the role of thyroid autoimmune disease in the pathogenesis of alopecia has only recently come to light, together with a strong association between the two. Therefore, this review focuses on articles published between 2011 and 2022 on alopecia's association with thyroid autoimmune disease, and the mechanism behind it. In addition, it highlights the link between alopecia and thyroid cancer, as patients with alopecia have increased risk of thyroid cancer. In conclusion, this comprehensive, focused, scoping review will serve as a reference highlighting recent information on alopecia, exploring its association with thyroid autoimmune diseases.
Collapse
Affiliation(s)
- Doaa Aboalola
- King Abdullah International Medical Research Center, Jeddah, Western Region, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Jeddah, Western Region, Saudi Arabia
- Ministry of National Guard Health Affairs, Jeddah, Western Region, Saudi Arabia
| | - Sihem Aouabdi
- King Abdullah International Medical Research Center, Jeddah, Western Region, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Jeddah, Western Region, Saudi Arabia
- Ministry of National Guard Health Affairs, Jeddah, Western Region, Saudi Arabia
| | - Majed Ramadan
- King Abdullah International Medical Research Center, Jeddah, Western Region, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Jeddah, Western Region, Saudi Arabia
- Ministry of National Guard Health Affairs, Jeddah, Western Region, Saudi Arabia
| | - Tariq Alghamdi
- King Abdullah International Medical Research Center, Jeddah, Western Region, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Jeddah, Western Region, Saudi Arabia
- Ministry of National Guard Health Affairs, Jeddah, Western Region, Saudi Arabia
| | - Mona Alsolami
- King Abdullah International Medical Research Center, Jeddah, Western Region, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Jeddah, Western Region, Saudi Arabia
- Ministry of National Guard Health Affairs, Jeddah, Western Region, Saudi Arabia
| | - Dalal Malibari
- King Abdullah International Medical Research Center, Jeddah, Western Region, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Jeddah, Western Region, Saudi Arabia
- Ministry of National Guard Health Affairs, Jeddah, Western Region, Saudi Arabia
| | - Rawiah Alsiary
- King Abdullah International Medical Research Center, Jeddah, Western Region, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Jeddah, Western Region, Saudi Arabia
- Ministry of National Guard Health Affairs, Jeddah, Western Region, Saudi Arabia
| |
Collapse
|
10
|
Yang L, Li C, Song T, Zhan X. Growth hormone proteoformics atlas created to promote predictive, preventive, and personalized approach in overall management of pituitary neuroendocrine tumors. EPMA J 2023; 14:443-456. [PMID: 37605654 PMCID: PMC10439873 DOI: 10.1007/s13167-023-00329-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/14/2023] [Indexed: 08/23/2023]
Abstract
Human growth hormone (GH) is the indispensable hormone for the maintenance of normal physiological functions of the human body, including the growth, development, metabolism, and even immunoregulation. The GH is synthesized, secreted, and stored by somatotroph cells in adenohypophysis. Abnormal GH is associated with various GH-related diseases, such as acromegaly, dwarfism, diabetes, and cancer. Currently, some studies found there are dozens or even hundreds of GH proteoforms in tissue and serum as well as a series of GH-binding protein (GHBP) proteoforms and GH receptor (GHR) proteoforms were also identified. The structure-function relationship of protein hormone proteoforms is significantly important to reveal their overall physiological and pathophysiological mechanisms. We propose the use of proteoformics to study the relationship between every GH proteoform and different physiological/pathophysiological states to clarify the pathogenic mechanism of GH-related disease such as pituitary neuroendocrine tumor and conduct precise molecular classification to promote predictive preventive personalized medicine (PPPM / 3P medicine). This article reviews GH proteoformics in GH-related disease such as pituitary neuroendocrine tumor, which has the potential role to provide novel insight into pathogenic mechanism, discover novel therapeutic targets, identify effective GH proteoform biomarker for patient stratification, predictive diagnosis, and prognostic assessment, improve therapy method, and further accelerate the development of 3P medicine.
Collapse
Affiliation(s)
- Lamei Yang
- Medical Science and Technology Innovation Center, and Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Chunling Li
- Department of Anesthesiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
| | - Tao Song
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Weiqi Road, Jinan, Shandong 250021 People’s Republic of China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, and Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| |
Collapse
|
11
|
Du H, Zhang T, Wang Q, Cao X, Zheng H, Li J, Zhu J, Qu J, Guo L, Sun Y. Traditional Chinese Medicine Shi-Bi-Man regulates lactic acid metabolism and drives hair follicle stem cell activation to promote hair regeneration. Chin Med 2023; 18:84. [PMID: 37454125 PMCID: PMC10349503 DOI: 10.1186/s13020-023-00791-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND As a supplement for promoting hair health, Shi-Bi-Man (SBM) is a prescription comprising various traditional Chinese medicines. Though SBM has been reported to promote hair regeneration, its molecular mechanism remains unclear. Cynomolgus monkeys (Macaca fascicularis) are non-human primates with a gene expression profile similar to that of humans. The purpose of this research is to evaluate the effect of SBM on promoting hair regeneration in cynomolgus monkeys and to reveal the underlying mechanism. METHODS The effect of SBM on hair regeneration was observed by skin administration on 6 cynomolgus monkeys with artificial back shaving. The molecular mechanism of SBM was studied using single-cell RNA sequencing (scRNA-seq) in combination with quantitative polymerase chain reaction (qPCR) detection for gene transcription level, and immunofluorescence staining verification for protein level. RESULTS SBM significantly induced hair regeneration in cynomolgus monkeys, increased hair follicle number and facilitated hair follicle development. ScRNA-seq revealed an increase in the number of hair follicle stem cells (HFSCs) with a higher activation state, as evidenced by the higher expression of activation marker LDHA related to metabolism and the proliferation marker MKI67. Immunofluorescence analysis at the protein level and qPCR at the mRNA level confirmed the sequencing data. Cellchat analysis revealed an enrichment of ligand-receptor pairs involved in intercellular communication in Laminin-related pathways. CONCLUSION SBM significantly promotes hair regeneration in cynomolgus monkeys. Mechanically, SBM can up-regulate LDHA-mediated lactic acid metabolism and drive HFSC activation, which in turn promotes the proliferation and differentiation of HFSCs.
Collapse
Affiliation(s)
- Haojie Du
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Tao Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Qiao Wang
- Department of Ultrasound, Shanghai Tenth People's Hospital, Shanghai, China
| | - Xinran Cao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Huiwen Zheng
- Department of Dermatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang Province, China
| | - Jiabin Li
- Department of Dermatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang Province, China
| | - Jianxia Zhu
- Shenzhen Sipimo Technology Co., Ltd., Shenzhen, 518000, Guangdong Province, China
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| | - Lehang Guo
- Department of Ultrasound, Shanghai Tenth People's Hospital, Shanghai, China.
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China.
| |
Collapse
|
12
|
Wang Y, Guo X, Liu J, Xing B. Skin manifestations and submacroscopical features of acromegaly: A case-control study using dermoscopy and high-frequency ultrasound. Skin Res Technol 2023; 29:e13319. [PMID: 37113099 PMCID: PMC10234156 DOI: 10.1111/srt.13319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/26/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND Although the cutaneous involvement of acromegaly has been recognized, the submacroscopical skin changes and the extent of skin thickening of patients remain unclear. OBJECTIVES This study aimed at investigating the clinical cutaneous manifestations, dermoscopic features, and skin thickness revealed by high-frequency ultrasound (HFUS) of acromegalic patients. METHODS A case-control observational study was conducted. Patients with acromegaly and controls were prospectively included and received thorough cutaneous examinations to compare the macroscopical and dermoscopic features. The skin thickness measured by HFUS and its correlation with clinical data were also assessed. RESULTS Thirty-seven and 26 patients from acromegalic and control group were included, respectively. Clinical skin manifestations were recorded in detail. Under dermoscopy, red structureless area (91.9% vs. 65.4%, p = 0.021), perifollicular orange halo (78.4% vs. 26.9%, p = 0.005), and follicular plug (70.3% vs. 3.9%, p = 0.001) in the facial area, and perifollicular pigmentation (91.9% vs. 23.1%), broom-head hairs (83.8% vs. 3.9%), honeycomb-like pigmentation (97.3% vs. 38.46%), widened dermatoglyphics (81.1% vs. 3.9%) at the extremities (p < 0.001) were more prevalent in acromegaly. The mean skin thickness was 4.10 ± 0.48 mm for acromegaly, and 3.55 ± 0.52 mm for controls (p < 0.001) but no correlation with disease duration, adenoma size, and hormone level was found in acromegaly. CONCLUSIONS Submacroscopical skin changes under dermoscopy and skin thickness increase assessed by HFUS can provide clinicians with subtle evidences for early detection of acromegaly and objective parameters for accurate assessment of its skin involvement.
Collapse
Affiliation(s)
- Yukun Wang
- Department of DermatologyState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeNational Clinical Research Center for Dermatologic and Immunologic DiseasesBeijingChina
| | - Xiaopeng Guo
- Department of NeurosurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- China Pituitary Disease Registry CenterBeijingChina
- China Pituitary Adenoma Specialist CouncilBeijingChina
| | - Jie Liu
- Department of DermatologyState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeNational Clinical Research Center for Dermatologic and Immunologic DiseasesBeijingChina
| | - Bing Xing
- Department of NeurosurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- China Pituitary Disease Registry CenterBeijingChina
- China Pituitary Adenoma Specialist CouncilBeijingChina
| |
Collapse
|
13
|
Leonardi E, Aspromonte MC, Drongitis D, Bettella E, Verrillo L, Polli R, McEntagart M, Licchetta L, Dilena R, D'Arrigo S, Ciaccio C, Esposito S, Leuzzi V, Torella A, Baldo D, Lonardo F, Bonato G, Pellegrin S, Stanzial F, Posmyk R, Kaczorowska E, Carecchio M, Gos M, Rzońca-Niewczas S, Miano MG, Murgia A. Expanding the genetics and phenotypic spectrum of Lysine-specific demethylase 5C (KDM5C): a report of 13 novel variants. Eur J Hum Genet 2023; 31:202-215. [PMID: 36434256 PMCID: PMC9905063 DOI: 10.1038/s41431-022-01233-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
Lysine-specific demethylase 5C (KDM5C) has been identified as an important chromatin remodeling gene, contributing to X-linked neurodevelopmental disorders (NDDs). The KDM5C gene, located in the Xp22 chromosomal region, encodes the H3K4me3-me2 eraser involved in neuronal plasticity and dendritic growth. Here we report 30 individuals carrying 13 novel and one previously identified KDM5C variants. Our cohort includes the first reported case of somatic mosaicism in a male carrying a KDM5C nucleotide substitution, and a dual molecular finding in a female carrying a homozygous truncating FUCA1 alteration together with a de novo KDM5C variant. With the use of next generation sequencing strategies, we detected 1 frameshift, 1 stop codon, 2 splice-site and 10 missense variants, which pathogenic role was carefully investigated by a thorough bioinformatic analysis. The pattern of X-chromosome inactivation was found to have an impact on KDM5C phenotypic expression in females of our cohort. The affected individuals of our case series manifested a neurodevelopmental condition characterized by psychomotor delay, intellectual disability with speech disorders, and behavioral features with particular disturbed sleep pattern; other observed clinical manifestations were short stature, obesity and hypertrichosis. Collectively, these findings expand the current knowledge about the pathogenic mechanisms leading to dysfunction of this important chromatin remodeling gene and contribute to a refinement of the KDM5C phenotypic spectrum.
Collapse
Affiliation(s)
- Emanuela Leonardi
- Department of Women's and Children's Health, University of Padova, Padova, Italy
- Pediatric Research Institute, Città della Speranza, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Maria Cristina Aspromonte
- Department of Women's and Children's Health, University of Padova, Padova, Italy
- Pediatric Research Institute, Città della Speranza, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Denise Drongitis
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", CNR, Naples, Italy
| | - Elisa Bettella
- Department of Women's and Children's Health, University of Padova, Padova, Italy
- Pediatric Research Institute, Città della Speranza, Padova, Italy
| | - Lucia Verrillo
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", CNR, Naples, Italy
| | - Roberta Polli
- Department of Women's and Children's Health, University of Padova, Padova, Italy
- Pediatric Research Institute, Città della Speranza, Padova, Italy
| | - Meriel McEntagart
- Medical Genetics Unit, St. George's University Hospitals, London, UK
| | - Laura Licchetta
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Robertino Dilena
- Neurophysiopathology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano D'Arrigo
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Claudia Ciaccio
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Silvia Esposito
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Vincenzo Leuzzi
- Unit of Child Neurology and Psychiatry, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Annalaura Torella
- University of Campania "Luigi Vanvitelli", Caserta, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Demetrio Baldo
- Unit of medical genetics, ULSS 2 Treviso Hospital, Treviso, Italy
| | | | - Giulia Bonato
- Movement Disorders Unit, Department of Neuroscience, University of Padova, Padova, Italy
| | - Serena Pellegrin
- Child Neurology and Neurorehabilitation Unit, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | - Franco Stanzial
- Genetic Counseling Service, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | - Renata Posmyk
- Department of Clinical Genetics, Medical University in Bialystok, Bialystok, Poland
| | - Ewa Kaczorowska
- Department of Biology and Medical Genetics, Medical University of Gdansk, Gdansk, Poland
| | - Miryam Carecchio
- Movement Disorders Unit, Department of Neuroscience, University of Padova, Padova, Italy
| | - Monika Gos
- Development Genetics Laboratory, Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Sylwia Rzońca-Niewczas
- Development Genetics Laboratory, Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | | | - Alessandra Murgia
- Department of Women's and Children's Health, University of Padova, Padova, Italy.
- Pediatric Research Institute, Città della Speranza, Padova, Italy.
| |
Collapse
|
14
|
Popa A, Carsote M, Cretoiu D, Dumitrascu MC, Nistor CE, Sandru F. Study of the Thyroid Profile of Patients with Alopecia. J Clin Med 2023; 12:1115. [PMID: 36769763 PMCID: PMC9918246 DOI: 10.3390/jcm12031115] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Thyroid hormones are required for the physiological growth and maintenance of hair follicles. We aim to study the thyroid profile of patients with alopecia. This is a narrative review. PubMed literature was searched from 2013 to 2022. We followed different types of alopecia: alopecia areata (AA), androgenic alopecia in males and females, telogen effluvium (TE), frontal fibrosing alopecia (FFA), lichen planopilaris, and alopecia neoplastica (AN). AA shares a common autoimmune background with autoimmune thyroid diseases, either sporadic or belonging to autoimmune polyglandular syndromes. Some data suggested that AA is more severe if thyroid anomalies are confirmed, including subclinical dysfunction or positive antithyroid antibodies with normal hormone values. However, routine thyroid screening for patients with AA, if the patients are asymptomatic from a thyroid point of view and they have negative personal and family history of autoimmunity, remains controversial. TE, apart from the autoimmune type, associates thyroid anomalies of a hormonal assay (between 5.7% and 17%). FFA, mostly a postmenopausal entity (however, not exclusive), associates a higher prevalence of thyroid conditions (up to 50%) than the general population. However, these might have an age-dependent pattern, thus the association may be incidental since there are a limited number of studies. Overall, alopecia remains a very challenging condition for patients and physicians; a multidisciplinary team is required to improve the outcome and quality of life. The common autoimmune background is suggestive of some types of alopecia and thyroid disorders, yet, the underlying mechanisms are still a matter of debate. AA, TE, FFA, LPP, and, potentially, female pattern hair loss have been found to be connected with thyroid entities, thus a state of awareness from a dual perspective, of trichology and endocrinology, is helpful.
Collapse
Affiliation(s)
- Adelina Popa
- Department of Dermatovenerology, “Carol Davila University” of Medicine and Pharmacy & “Elias” University Emergency Hospital, 011461 Bucharest, Romania
| | - Mara Carsote
- Department of Endocrinology, “Carol Davila” University of Medicine and Pharmacy & “C.I. Parhon” National Institute of Endocrinology, 011461 Bucharest, Romania
| | - Dragos Cretoiu
- Department of Cellular and Molecular Biology, and Histology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy & National Institute for Mother and Child Health Alessandrescu-Rusescu, 011461 Bucharest, Romania
| | - Mihai Cristian Dumitrascu
- Department of Obstetrics and Gynaecology, “Carol Davila” University of Medicine and Pharmacy & University Emergency Hospital, 011461 Bucharest, Romania
| | - Claudiu-Eduard Nistor
- Department 4–Cardio-Thoracic Pathology, Thoracic Surgery II Discipline, “Carol Davila” University of Medicine and Pharmacy & Thoracic Surgery Department, “Carol Davila” Central Emergency University Military Hospital, 011461 Bucharest, Romania
| | - Florica Sandru
- Department of Dermatovenerology, “Carol Davila University” of Medicine and Pharmacy & “Elias” University Emergency Hospital, 011461 Bucharest, Romania
| |
Collapse
|
15
|
Drake L, Reyes-Hadsall S, Martinez J, Heinrich C, Huang K, Mostaghimi A. Evaluation of the Safety and Effectiveness of Nutritional Supplements for Treating Hair Loss: A Systematic Review. JAMA Dermatol 2023; 159:79-86. [PMID: 36449274 DOI: 10.1001/jamadermatol.2022.4867] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Importance Despite the widespread use of nutritional supplements and dietary interventions for treating hair loss, the safety and effectiveness of available products remain unclear. Objective To evaluate and compile the findings of all dietary and nutritional interventions for treatment of hair loss among individuals without a known baseline nutritional deficiency. Evidence Review The MEDLINE, Embase, and CINAHL databases were searched from inception through October 20, 2021, to identify articles written in English with original findings from investigations of dietary and nutritional interventions in individuals with alopecia or hair loss without a known baseline nutritional deficiency. Quality was assessed with Oxford Centre for Evidence Based Medicine criteria. Outcomes of interest were disease course, both objectively and subjectively measured. Data were evaluated from January 3 to 11, 2022. Findings The database searches yielded 6347 citations to which 11 articles from reference lists were added. Of this total, 30 articles were included: 17 randomized clinical trials (RCTs), 11 clinical studies (non-RCT), and 2 case series studies. No diet-based interventional studies met inclusion criteria. Studies of nutritional interventions with the highest-quality evidence showed the potential benefit of Viviscal, Nourkrin, Nutrafol, Lamdapil, Pantogar, capsaicin and isoflavone, omegas 3 and 6 with antioxidants, apple nutraceutical, total glucosides of paeony and compound glycyrrhizin tablets, zinc, tocotrienol, and pumpkin seed oil. Kimchi and cheonggukjang, vitamin D3, and Forti5 had low-quality evidence for disease course improvement. Adverse effects were rare and mild for all the therapies evaluated. Conclusions and Relevance The findings of this systematic review should be interpreted in the context of each study's design; however, this work suggests a potential role for nutritional supplements in the treatment of hair loss. Physicians should engage in shared decision-making by covering the potential risks and benefits of these treatments with patients experiencing hair loss. Future research should focus on larger RCTs with active comparators.
Collapse
Affiliation(s)
- Lara Drake
- Tufts University School of Medicine, Boston, Massachusetts
| | | | - Jeremy Martinez
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts
| | | | - Kathie Huang
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Arash Mostaghimi
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
16
|
Human Hair Follicles Operate a Functional Peripheral Equivalent of the Hypothalamic-Pituitary-Somatotropic Axis Ex Vivo. J Invest Dermatol 2022; 143:868-871.e7. [PMID: 36496194 DOI: 10.1016/j.jid.2022.09.660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/18/2022] [Accepted: 09/29/2022] [Indexed: 12/12/2022]
|
17
|
Xu K, Yu E, Wu M, Wei P, Yin J. Cells, growth factors and biomaterials used in tissue engineering for hair follicles regeneration. Regen Ther 2022; 21:596-610. [DOI: 10.1016/j.reth.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022] Open
|