1
|
Chamorro-Jorganes A, Profitós-Pelejà N, Recasens-Zorzo C, Valero JG, Reyes-Garau D, Magnano L, Butler R, Postigo A, Pérez-Galán P, Ribeiro ML, Roué G. YPEL2 regulates the efficacy of BRD4-EZH2 dual targeting in EZH2 Y641mut germinal center-derived lymphoma. Neoplasia 2025; 61:101131. [PMID: 39914169 PMCID: PMC11847303 DOI: 10.1016/j.neo.2025.101131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025]
Abstract
A significant proportion of diffuse large B cell lymphoma (DLBCL) and follicular lymphoma (FL) cases harbor a gain-of-function, heterozygous somatic mutation of the methyltransferase gene EZH2. While this factor is known to cooperate with the proto-oncogene MYC during malignant B cell development, the effect of interfering with both factors remains underexplored. Here we undertook the simultaneous evaluation of two epigenetic drugs targeting EZH2 methyltransferase activity and BRD4-mediated control of MYC transcription, CPI169 and CPI203, using preclinical models of DLBCL and FL with distinct EZH2 mutational status. We observed a specific and synergistic antiproliferative effect of these compounds in EZH2-mutated cells and mouse xenograft models, that was related to the abrogation of MYC transcriptional program and to tumor cell proliferation blockade at the G1 cell cycle phase. Gene expression profile, exploratory data analysis, and siRNA screening identified the PI3K/AKT-regulated gene and mitosis regulator, YPEL2, as a crucial factor involved in the efficacy of MYC/EZH2 dual targeting both in vitro and in vivo. Altogether, our results provide first pre-clinical evidence that simultaneous targeting of MYC and EZH2 is a safe and efficient approach that can be monitored by specific biomarkers, in aggressive lymphoid tumors of germinal center origin.
Collapse
MESH Headings
- Enhancer of Zeste Homolog 2 Protein/metabolism
- Enhancer of Zeste Homolog 2 Protein/genetics
- Animals
- Humans
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Mice
- Germinal Center/metabolism
- Germinal Center/pathology
- Cell Line, Tumor
- Xenograft Model Antitumor Assays
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Cell Proliferation/drug effects
- Mutation
- Gene Expression Regulation, Neoplastic/drug effects
- Proto-Oncogene Proteins c-myc/metabolism
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Mas
- Disease Models, Animal
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/drug therapy
- Lymphoma, Follicular/pathology
- Lymphoma, Follicular/metabolism
- Biphenyl Compounds
- Morpholines
- Benzamides
- Pyridones
- Bromodomain Containing Proteins
Collapse
Affiliation(s)
- Aránzazu Chamorro-Jorganes
- Division of Hemato-oncology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Núria Profitós-Pelejà
- Division of Hemato-oncology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Lymphoma Translational group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Clara Recasens-Zorzo
- Division of Hemato-oncology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan G Valero
- Division of Hemato-oncology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Diana Reyes-Garau
- Lymphoma Translational group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Laura Magnano
- Division of Hemato-oncology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Antonio Postigo
- Group of Gene Regulation of Stem Cells and Cell Plasticity, IDIBAPS, ICREA, Barcelona, Spain
| | - Patricia Pérez-Galán
- Division of Hemato-oncology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Marcelo Lima Ribeiro
- Lymphoma Translational group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain; Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University Medical School, Braganca Paulista, Sao Paulo, Brazil
| | - Gaël Roué
- Lymphoma Translational group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain.
| |
Collapse
|
2
|
Wang H, Wan X, Zhang Y, Guo J, Bai O. Advances in the treatment of relapsed/refractory marginal zone lymphoma. Front Oncol 2024; 14:1327309. [PMID: 38333686 PMCID: PMC10850340 DOI: 10.3389/fonc.2024.1327309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/09/2024] [Indexed: 02/10/2024] Open
Abstract
Marginal zone lymphoma (MZL) is the second most common subtype of inert B-cell non-Hodgkin's lymphoma, accounting for 5-15% of non-Hodgkin's lymphoma cases. Patients with MZL have a long survival period, with a median survival of >10 years, and patients treated with a combination of anti-CD20 monoclonal antibody can achieve an overall effective rate of 81%. However, 20% of patients with MZL show relapse or experience disease progression within 2 years, with a median survival of only 3-5 years. Currently, the treatment options for patients with relapsed/refractory (R/R) MZL are limited, underscoring the pressing need for novel therapeutic drugs. The advent of novel anti-CD20 monoclonal antibodies, small molecule kinase inhibitors, immunomodulators, and other therapeutic strategies has ushered in a new era in the treatment of R/R MZL. Our objective is to summarize the existing treatment strategies, including immunotherapy and the emergent targeted therapies, and to evaluate their effectiveness and safety in the management of R/R MZL. By doing so, we aim to provide a clear understanding of the therapeutic landscape for R/R MZL, and to guide future research directions toward improving the prognosis and quality of life for patients afflicted with this challenging disease.
Collapse
Affiliation(s)
| | | | | | | | - Ou Bai
- Department of Hematology, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
Winkler R, Mägdefrau AS, Piskor EM, Kleemann M, Beyer M, Linke K, Hansen L, Schaffer AM, Hoffmann ME, Poepsel S, Heyd F, Beli P, Möröy T, Mahboobi S, Krämer OH, Kosan C. Targeting the MYC interaction network in B-cell lymphoma via histone deacetylase 6 inhibition. Oncogene 2022; 41:4560-4572. [PMID: 36068335 PMCID: PMC9525236 DOI: 10.1038/s41388-022-02450-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022]
Abstract
Overexpression of MYC is a genuine cancer driver in lymphomas and related to poor prognosis. However, therapeutic targeting of the transcription factor MYC remains challenging. Here, we show that inhibition of the histone deacetylase 6 (HDAC6) using the HDAC6 inhibitor Marbostat-100 (M-100) reduces oncogenic MYC levels and prevents lymphomagenesis in a mouse model of MYC-induced aggressive B-cell lymphoma. M-100 specifically alters protein-protein interactions by switching the acetylation state of HDAC6 substrates, such as tubulin. Tubulin facilitates nuclear import of MYC, and MYC-dependent B-cell lymphoma cells rely on continuous import of MYC due to its high turn-over. Acetylation of tubulin impairs this mechanism and enables proteasomal degradation of MYC. M-100 targets almost exclusively B-cell lymphoma cells with high levels of MYC whereas non-tumor cells are not affected. M-100 induces massive apoptosis in human and murine MYC-overexpressing B-cell lymphoma cells. We identified the heat-shock protein DNAJA3 as an interactor of tubulin in an acetylation-dependent manner and overexpression of DNAJA3 resulted in a pronounced degradation of MYC. We propose a mechanism by which DNAJA3 associates with hyperacetylated tubulin in the cytoplasm to control MYC turnover. Taken together, our data demonstrate a beneficial role of HDAC6 inhibition in MYC-dependent B-cell lymphoma.
Collapse
Affiliation(s)
- René Winkler
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Jena, 07745, Germany.,Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias i Pujol, Badalona, 08916, Spain
| | - Ann-Sophie Mägdefrau
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Jena, 07745, Germany
| | - Eva-Maria Piskor
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Jena, 07745, Germany
| | - Markus Kleemann
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Jena, 07745, Germany
| | - Mandy Beyer
- Institute of Toxicology, University Medical Center Mainz, Mainz, 55131, Germany
| | - Kevin Linke
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Jena, 07745, Germany
| | - Lisa Hansen
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Jena, 07745, Germany
| | - Anna-Maria Schaffer
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Jena, 07745, Germany
| | | | - Simon Poepsel
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, University of Cologne, Cologne, 50931, Germany.,Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany
| | - Florian Heyd
- Laboratory of RNA Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, 14195, Germany
| | - Petra Beli
- Institute of Molecular Biology (IMB), Mainz, 55128, Germany
| | - Tarik Möröy
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada
| | - Siavosh Mahboobi
- Department of Pharmaceutical/Medicinal Chemistry I, Institute of Pharmacy, University of Regensburg, Regensburg, 93040, Germany
| | - Oliver H Krämer
- Institute of Toxicology, University Medical Center Mainz, Mainz, 55131, Germany
| | - Christian Kosan
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Jena, 07745, Germany.
| |
Collapse
|
4
|
Jin Y, Liu T, Luo H, Liu Y, Liu D. Targeting Epigenetic Regulatory Enzymes for Cancer Therapeutics: Novel Small-Molecule Epidrug Development. Front Oncol 2022; 12:848221. [PMID: 35419278 PMCID: PMC8995554 DOI: 10.3389/fonc.2022.848221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Dysregulation of the epigenetic enzyme-mediated transcription of oncogenes or tumor suppressor genes is closely associated with the occurrence, progression, and prognosis of tumors. Based on the reversibility of epigenetic mechanisms, small-molecule compounds that target epigenetic regulation have become promising therapeutics. These compounds target epigenetic regulatory enzymes, including DNA methylases, histone modifiers (methylation and acetylation), enzymes that specifically recognize post-translational modifications, chromatin-remodeling enzymes, and post-transcriptional regulators. Few compounds have been used in clinical trials and exhibit certain therapeutic effects. Herein, we summarize the classification and therapeutic roles of compounds that target epigenetic regulatory enzymes in cancer treatment. Finally, we highlight how the natural compounds berberine and ginsenosides can target epigenetic regulatory enzymes to treat cancer.
Collapse
Affiliation(s)
- Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Tianjia Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Haoming Luo
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yangyang Liu
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|