1
|
Jiang Z, Ni J, Zhou S, Yang L, Huang X, Bao J, Liu J. NiWo4- RGO composite exerts cytotoxic effects on pancreatic carcinoma cells via a cross-talk between reactive oxygen species-independent canonical autophagy of the mitochondria and epithelial-mesenchymal transition. J Drug Deliv Sci Technol 2024; 95:105584. [DOI: 10.1016/j.jddst.2024.105584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
|
2
|
El Fawal G, Abu-Serie MM, Ali SM, Elessawy NA. Nanocomposite fibers based on cellulose acetate loaded with fullerene for cancer therapy: preparation, characterization and in-vitro evaluation. Sci Rep 2023; 13:21045. [PMID: 38030752 PMCID: PMC10687030 DOI: 10.1038/s41598-023-48302-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023] Open
Abstract
The current prevalence of cancerous diseases necessitates the exploration of materials that can effectively treat these conditions while minimizing the occurrence of adverse side effects. This study aims to identify materials with the potential to inhibit the metastasis of cancerous diseases within the human body while concurrently serving as therapeutic agents for their treatment. A novel approach was employed to enhance the anti-cancer properties of electrospun cellulose fibers by incorporating fullerene nanoparticles (NPs) into cellulose acetate (CA) fibers, resulting in a composite material called Fullerene@CA. This development aimed at utilizing the anti-cancer properties of fullerenes for potential therapeutic applications. This process has been demonstrated in vitro against various types of cancer, and it was found that Fullerene@CA nanocomposite fibers displayed robust anticancer activity. Cancer cells (Caco-2, MDA-MB 231, and HepG-2 cells) were inhibited by 0.3 and 0.5 mg.g-1 fullerene doses by 58.62-62.87%, 47.86-56.43%, and 48.60-57.73%, respectively. The tested cancer cells shrink and lose their spindle shape due to morphological changes. The investigation of the prepared nanocomposite reveals its impact on various genes, such as BCL2, NF-KB, p53, Bax, and p21, highlighting the therapeutic compounds' effectiveness. The experimental results demonstrated that the incorporation of NPs into CA fibers resulted in a significant improvement in their anti-cancer efficacy. Therefore, it is suggested that these modified fibers could be utilized as a novel therapeutic approach for the treatment and prevention of cancer metastasis.
Collapse
Affiliation(s)
- Gomaa El Fawal
- Polymer Materials Research Department, SRTA-City), Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab City, Alexandria, 21934, Egypt
| | - Safaa M Ali
- Nucleic Acid Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Noha A Elessawy
- Computer Based Engineering Applications Department, Informatics Research Institute IRI, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt.
| |
Collapse
|
3
|
Serda M, Korzuch J, Dreszer D, Krzykawska-Serda M, Musioł R. Interactions between modified fullerenes and proteins in cancer nanotechnology. Drug Discov Today 2023; 28:103704. [PMID: 37453461 DOI: 10.1016/j.drudis.2023.103704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Fullerenes have numerous properties that fill the gap between small molecules and nanomaterials. Several types of chemical reaction allow their surface to be ornamented with functional groups designed to change them into 'ideal' nanodelivery systems. Improved stability, and bioavailability are important, but chemical modifications can render them practically soluble in water. 'Buckyball' fullerene scaffolds can interact with many biological targets and inhibit several proteins essential for tumorigeneses. Herein, we focus on the inhibitory properties of fullerene nanomaterials against essential proteins in cancer nanotechnology, as well as the use of dedicated proteins to improve the bioavailability of these promising nanomaterials.
Collapse
Affiliation(s)
- Maciej Serda
- Institute of Chemistry, University of Silesia in Katowice, Katowice, Poland.
| | - Julia Korzuch
- Institute of Chemistry, University of Silesia in Katowice, Katowice, Poland
| | - Dominik Dreszer
- Institute of Chemistry, University of Silesia in Katowice, Katowice, Poland
| | | | - Robert Musioł
- Institute of Chemistry, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
4
|
Kamyabi R, Jahandideh A, Panahi N, Muhammadnejad S. Synergistic cytotoxicity effect of the combination of chitosan nanoencapsulated imatinib mesylate and quercetin in BCR-ABL positive K562 cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:359-366. [PMID: 36865043 PMCID: PMC9922367 DOI: 10.22038/ijbms.2023.68472.14934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/18/2022] [Indexed: 03/04/2023]
Abstract
Objectives Intolerable side effects and resistance to chemotherapeutic drugs have encouraged scientists to develop new methods of drug combinations with fewer complications. This study aimed to investigate the synergistic effects of quercetin and imatinib encapsulated in chitosan nanoparticles on cytotoxicity, apoptosis, and cell growth of the K562 cell line. Materials and Methods Imatinib and quercetin were encapsulated in chitosan nanoparticles and their physical properties were determined using standard methods and SEM microscope images. BCR-ABL positive K562 cells were cultured in a cell culture medium, cytotoxicity of drugs was determined by MTT assay and the effects of nano drugs on apoptosis in cells were investigated by Annexin V-FITC staining. The expression level of genes associated with apoptosis in cells was measured by real-time PCR. Results The IC50 for the combination of the nano drugs at 24 and 48 hr was 9.324 and 10.86 μg/ml, respectively. The data indicated that the encapsulated form of drugs induced apoptosis more effectively than the free form (P<0.05). Moreover, the synergistic effect of nano drugs in statistical analysis was proved (P=0.001). The combination of nano drugs resulted in the caspase 3, 8, and TP53 genes upregulation (P=0.001). Conclusion The results of the present study showed that the encapsulated form of imatinib and quercetin nano drugs with chitosan has more cytotoxicity than the free form of the drugs. In addition, the combination of imatinib and quercetin as a nano-drug complex has a synergistic effect on the induction of apoptosis in imatinib-resistant K562 cells.
Collapse
Affiliation(s)
- Rohollah Kamyabi
- Department of Veterinary Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Jahandideh
- Department of Veterinary Surgery, Science and Research Branch, Islamic Azad University, Tehran, Iran,Corresponding author: Alireza Jahandideh. Department of Veterinary Surgery, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Negar Panahi
- Department of Veterinary Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Samad Muhammadnejad
- Gene Therapy Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Deng R, Wang Y, Bu Y, Wu H. BNIP3 mediates the different adaptive responses of fibroblast-like synovial cells to hypoxia in patients with osteoarthritis and rheumatoid arthritis. Mol Med 2022; 28:64. [PMID: 35690741 PMCID: PMC9188199 DOI: 10.1186/s10020-022-00490-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/25/2022] [Indexed: 01/01/2023] Open
Abstract
Background Hypoxia is one of the important characteristics of synovial microenvironment in rheumatoid arthritis (RA), and plays an important role in synovial hyperplasia. In terms of cell survival, fibroblast-like synovial cells (FLSs) are relatively affected by hypoxia. In contrast, fibroblast-like synovial cells from patients with RA (RA-FLSs) are particularly resistant to hypoxia-induced cell death. The purpose of this study was to evaluate whether fibroblast-like synovial cells in patients with osteoarthritis (OA-FLSs) and RA-FLSs have the same adaptation to hypoxia. Methods CCK-8, flow cytometry and BrdU were used to detect the proliferation of OA-FLSs and RA-FLSs under different oxygen concentrations. Apoptosis was detected by AV/PI, TUNEL and Western blot, mitophagy was observed by electron microscope, laser confocal microscope and Western blot, the state of mitochondria was detected by ROS and mitochondrial membrane potential by flow cytometry, BNIP3 and HIF-1α were detected by Western blot and RT-qPCR. The silencing of BNIP3 was achieved by stealth RNA system technology. Results After hypoxia, the survival rate of OA-FLSs decreased, while the proliferation activity of RA-FLSs further increased. Hypoxia induced an increase in apoptosis and inhibition of mitophagy in OA-FLSs, but not in RA-FLSs. Hypoxia led to a more lasting adaptive response. RA-FLSs displayed a more significant increase in the expression of genes transcriptionally regulated by HIF-1α. Interestingly, they showed higher BNIP3 expression than OA-FLSs, and showed stronger mitophagy and proliferation activities. BNIP3 siRNA experiment confirmed the potential role of BNIP3 in the survival of RA-FLSs. Inhibition of BNIP3 resulted in the decrease of cell proliferation, mitophagy and the increase of apoptosis. Conclusion In summary, RA-FLSs maintained intracellular redox balance through mitophagy to promote cell survival under hypoxia. The mitophagy of OA-FLSs was too little to maintain the redox balance of mitochondria, resulting in apoptosis. The difference of mitophagy between OA-FLSs and RA-FLSs under hypoxia is mediated by the level of BNIP3 expression.
Collapse
Affiliation(s)
- Ran Deng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China.,Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China.,Anhui Province Key Laboratory of Research &, Development of Chinese Medicine, Hefei, 230012, China
| | - Yan Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China.,Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China.,Anhui Province Key Laboratory of Research &, Development of Chinese Medicine, Hefei, 230012, China
| | - Yanhong Bu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China.,Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China.,Anhui Province Key Laboratory of Research &, Development of Chinese Medicine, Hefei, 230012, China
| | - Hong Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China. .,Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China. .,Anhui Province Key Laboratory of Research &, Development of Chinese Medicine, Hefei, 230012, China. .,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|