1
|
Rigueur D. A primer for Fibroblast Growth Factor 16 (FGF16). Differentiation 2024; 140:100817. [PMID: 39632143 DOI: 10.1016/j.diff.2024.100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024]
Abstract
During the discovery of the Fibroblast Growth Factor superfamily, scientists were determined to uncover all the genes that encoded FGF proteins. In 1998, FGF16 was discovered with classical cloning techniques in human and rat heart samples. FGF16 loss- and gain-of-function experiments in several organisms demonstrated a conserved function in vertebrates, and as a component of the FGF9 subfamily of ligands (FGF-E/-9/-20), is functionally conserved and sufficient to rescue loss-of-function phenotypes in invertebrates, like C. elegans. FGF16 has a broad expression pattern, predominantly expressed in brown adipose tissue, heart, with low but detectable levels in the brain, olfactory bulb, inner ear, muscle, thymus, pancreas, spleen, stomach, small intestine, and gonads (testis and ovary). FGF16 is also expressed moderately in the late developing limb bud. Despite its expression levels, this ligand plays notable roles in autopod metacarpal development; loss of one allele causes congenital metacarpal 4-5 fusion and hand deformities in humans. The broad expression pattern of FGF16 in several tissues underscores its multifaceted roles in stem cell maintenance, proliferation, cell fate specification, and metabolism.
Collapse
Affiliation(s)
- Diana Rigueur
- University of California, Los Angeles, Department of Molecular, Cell and Developmental Biology, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Huang C, liu H, Yang Y, He Y, shen W. Berberine suppressed the epithelial-mesenchymal transition (EMT) of colon epithelial cells through the TGF-β1/Smad and NF-κB pathways associated with miRNA-1269a. Heliyon 2024; 10:e36059. [PMID: 39224263 PMCID: PMC11367465 DOI: 10.1016/j.heliyon.2024.e36059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/19/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Objective To explore the mechanisms of the TGF-β1/Smad and NF-κB pathways in the effect of berberine (BBR) on colon cancer epithelial-mesenchymal transition (EMT) and their regulatory relationships with microRNAs (miRNAs). Methods TGF-β1 was used to induce EMT in normal colon epithelial HCoEpiC cells and colon cancer HT29 cells in vitro. After BBR intervention, the expression of EMT-related markers and the major molecules involved in the TGF-β1/Smad and NF-κB pathways were detected via western blotting. Cell migration was detected via wound healing assays. SMAD2 and NF-κB p65 were overexpressed and transfected into cells, and the inhibitors SB431542 and BAY 11-7082 were added to block the TGF-β1/Smad and NF-κB pathways, respectively. The mRNA expression levels of related microRNA genes were detected by using RT‒PCR. Results Treatment with 10 ng/ml TGF-β1 for 72 h significantly induced EMT in HCoEpiC and HT29 cells, which was repressed by BBR. BBR significantly inhibited the TGF-β1-induced migration of HCoEpiC and HT29 cells and the TGF-β1-promoted expression of p-Smad2/3, NF-κB p65, and p-IκBα. Compared to those in the group treated with TGF-β1, the expression of NF-κB p65 and p-Smad2 in the group treated with NF-κB pathway inhibitor BAY 11-7082 was decreased (P < 0.05), and TGF-β1 signalling inhibitor SB431542 significantly reduced the expression of NF-κB p65 (P < 0.05). Overexpression of NF-κB p65 and SMAD2 in HT29 cells decreased the expression of E-cadherin and caused a relative increase in N-cadherin. BBR mediated the expression profile of microRNAs in TGF-β1-induced HCoEpiC cells, but this pattern differed from that in HT29 cells. SB431542 and BAY 11-7082 significantly reduced the mRNA level of miR-1269a in HCoEpiC and HT29 cells (P < 0.05). Overexpressed NF-κB p65 and SMAD2 increased the mRNA level of miR-1269a in both cell lines; however, this increase was significantly lower than that in the TGF-β1 treatment group (P < 0.05). Conclusion BBR can significantly inhibit TGF-β1-induced EMT in normal and cancerous colon epithelial cells through the inhibition of the TGF-β1/Smad and NF-κB p65 pathways. TGF-β1/Smads can promote the NF-κB p65 pathway, which is a common target of miR-1269a, and can partially regulate the expression of miR-1269a.
Collapse
Affiliation(s)
- chao Huang
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Shenzhen University (People's Hospital of Shenzhen Baoan District), Shenzhen, 518100, China
| | - Haosheng liu
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Shenzhen University (People's Hospital of Shenzhen Baoan District), Shenzhen, 518100, China
| | - Yidian Yang
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Shenzhen University (People's Hospital of Shenzhen Baoan District), Shenzhen, 518100, China
| | - Yue He
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Shenzhen University (People's Hospital of Shenzhen Baoan District), Shenzhen, 518100, China
| | - Weizeng shen
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Shenzhen University (People's Hospital of Shenzhen Baoan District), Shenzhen, 518100, China
| |
Collapse
|
3
|
Zheng Y, Ma Y, Xiong Q, Zhu K, Weng N, Zhu Q. The role of artificial intelligence in the development of anticancer therapeutics from natural polyphenols: Current advances and future prospects. Pharmacol Res 2024; 208:107381. [PMID: 39218422 DOI: 10.1016/j.phrs.2024.107381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/06/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Natural polyphenols, abundant in the human diet, are derived from a wide variety of sources. Numerous preclinical studies have demonstrated their significant anticancer properties against various malignancies, making them valuable resources for drug development. However, traditional experimental methods for developing anticancer therapies from natural polyphenols are time-consuming and labor-intensive. Recently, artificial intelligence has shown promising advancements in drug discovery. Integrating AI technologies into the development process for natural polyphenols can substantially reduce development time and enhance efficiency. In this study, we review the crucial roles of natural polyphenols in anticancer treatment and explore the potential of AI technologies to aid in drug development. Specifically, we discuss the application of AI in key stages such as drug structure prediction, virtual drug screening, prediction of biological activity, and drug-target protein interaction, highlighting the potential to revolutionize the development of natural polyphenol-based anticancer therapies.
Collapse
Affiliation(s)
- Ying Zheng
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Yifei Ma
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Qunli Xiong
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Kai Zhu
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian 350011, PR China
| | - Ningna Weng
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian 350011, PR China
| | - Qing Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, Sichuan 610041, China.
| |
Collapse
|
4
|
Li D, Liu C, Wang H, Li Y, Wang Y, An S, Sun S. The Role of Neuromodulation and Potential Mechanism in Regulating Heterotopic Ossification. Neurochem Res 2024; 49:1628-1642. [PMID: 38416374 DOI: 10.1007/s11064-024-04118-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 02/29/2024]
Abstract
Heterotopic ossification (HO) is a pathological process characterized by the aberrant formation of bone in muscles and soft tissues. It is commonly triggered by traumatic brain injury, spinal cord injury, and burns. Despite a wide range of evidence underscoring the significance of neurogenic signals in proper bone remodeling, a clear understanding of HO induced by nerve injury remains rudimentary. Recent studies suggest that injury to the nervous system can activate various signaling pathways, such as TGF-β, leading to neurogenic HO through the release of neurotrophins. These pathophysiological changes lay a robust groundwork for the prevention and treatment of HO. In this review, we collected evidence to elucidate the mechanisms underlying the pathogenesis of HO related to nerve injury, aiming to enhance our understanding of how neurological repair processes can culminate in HO.
Collapse
Affiliation(s)
- Dengju Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong First Medical University, Jinan, Shandong, China
| | - Changxing Liu
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Haojue Wang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yunfeng Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yaqi Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Senbo An
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- Shandong First Medical University, Jinan, Shandong, China.
| | - Shui Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- Shandong First Medical University, Jinan, Shandong, China.
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
5
|
Jung EJ, Kim HJ, Shin SC, Kim GS, Jung JM, Hong SC, Chung KH, Kim CW, Lee WS. Anticancer Effect by Combined Treatment of Artemisia annua L. Polyphenols and Docetaxel in DU145 Prostate Cancer Cells and HCT116 Colorectal Cancer Cells. Curr Issues Mol Biol 2024; 46:1621-1634. [PMID: 38392223 PMCID: PMC10888123 DOI: 10.3390/cimb46020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
Docetaxel (DTX), a semi-synthetic analogue of paclitaxel (taxol), is known to exert potent anticancer activity in various cancer cells by suppressing normal microtubule dynamics. In this study, we examined how the anticancer effect of DTX is regulated by polyphenols extracted from Korean Artemisia annua L. (pKAL) in DU145 prostate cancer cells (mutant p53) and HCT116 colorectal cancer cells (wild-type p53). Here, we show that the anticancer effect of DTX was enhanced more significantly by pKAL in HCT116 cells than in DU145 cells via phase-contrast microscopy, CCK-8 assay, Western blot, and flow cytometric analysis of annexin V/propidium iodide-stained cells. Notably, mutant p53 was slightly downregulated by single treatment of pKAL or DTX in DU145 cells, whereas wild-type p53 was significantly upregulated by pKAL or DTX in HCT116 cells. Moreover, the enhanced anticancer effect of DTX by pKAL in HCT116 cells was significantly associated with the suppression of DTX-induced p53 upregulation, increase of DTX-induced phospho-p38, and decrease of DTX-regulated cyclin A, cyclin B1, AKT, caspase-8, PARP1, GM130, NF-κB p65, and LDHA, leading to the increased apoptotic cell death and plasma membrane permeability. Our results suggest that pKAL could effectively improve the anticancer effect of DTX-containing chemotherapy used to treat various cancers expressing wild-type p53.
Collapse
Affiliation(s)
- Eun Joo Jung
- Department of Internal Medicine, Institute of Medical Science, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, 15 Jinju-daero 816 Beon-gil, Jinju 52727, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Medical Science, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea
| | - Sung Chul Shin
- Department of Chemistry, Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Gon Sup Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jin-Myung Jung
- Department of Neurosurgery, Institute of Medical Science, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea
| | - Soon Chan Hong
- Department of Surgery, Institute of Medical Science, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea
| | - Ky Hyun Chung
- Department of Urology, Institute of Medical Science, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea
| | - Choong Won Kim
- Department of Biochemistry, Institute of Medical Science, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea
| | - Won Sup Lee
- Department of Internal Medicine, Institute of Medical Science, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, 15 Jinju-daero 816 Beon-gil, Jinju 52727, Republic of Korea
| |
Collapse
|
6
|
Jung EJ, Kim HJ, Shin SC, Kim GS, Jung JM, Hong SC, Kim CW, Lee WS. Artemisia annua L. Polyphenols Enhance the Anticancer Effect of β-Lapachone in Oxaliplatin-Resistant HCT116 Colorectal Cancer Cells. Int J Mol Sci 2023; 24:17505. [PMID: 38139333 PMCID: PMC10743427 DOI: 10.3390/ijms242417505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Recent studies suggest that the anticancer activity of β-lapachone (β-Lap) could be improved by different types of bioactive phytochemicals. The aim of this study was to elucidate how the anticancer effect of β-Lap is regulated by polyphenols extracted from Korean Artemisia annua L. (pKAL) in parental HCT116 and oxaliplatin-resistant (OxPt-R) HCT116 colorectal cancer cells. Here, we show that the anticancer effect of β-Lap is more enhanced by pKAL in HCT116-OxPt-R cells than in HCT116 cells via a CCK-8 assay, Western blot, and phase-contrast microscopy analysis of hematoxylin-stained cells. This phenomenon was associated with the suppression of OxPt-R-related upregulated proteins including p53 and β-catenin, the downregulation of cell survival proteins including TERT, CD44, and EGFR, and the upregulation of cleaved HSP90, γ-H2AX, and LC3B-I/II. A bioinformatics analysis of 21 proteins regulated by combined treatment of pKAL and β-Lap in HCT116-OxPt-R cells showed that the enhanced anticancer effect of β-Lap by pKAL was related to the inhibition of negative regulation of apoptotic process and the induction of DNA damage through TERT, CD44, and EGFR-mediated multiple signaling networks. Our results suggest that the combination of pKAL and β-Lap could be used as a new therapy with low toxicity to overcome the OxPt-R that occurred in various OxPt-containing cancer treatments.
Collapse
Affiliation(s)
- Eun Joo Jung
- Department of Internal Medicine, Institute of Medical Science, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, 15 Jinju-daero 816 Beon-gil, Jinju 52727, Republic of Korea;
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Medical Science, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea
| | - Sung Chul Shin
- Department of Chemistry, Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Gon Sup Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Jin-Myung Jung
- Department of Neurosurgery, Institute of Medical Science, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea;
| | - Soon Chan Hong
- Department of Surgery, Institute of Medical Science, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea;
| | - Choong Won Kim
- Department of Biochemistry, Institute of Medical Science, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea;
| | - Won Sup Lee
- Department of Internal Medicine, Institute of Medical Science, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, 15 Jinju-daero 816 Beon-gil, Jinju 52727, Republic of Korea;
| |
Collapse
|
7
|
Pan C, Chen H, Yang B. Licochalcone A Inhibits Proliferation and Metastasis of Colon Cancer by Regulating miR-1270/ADAM9/Akt/NF-κB axis. IRANIAN JOURNAL OF PUBLIC HEALTH 2023; 52:1962-1972. [PMID: 38033851 PMCID: PMC10682590 DOI: 10.18502/ijph.v52i9.13578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/14/2023] [Indexed: 12/02/2023]
Abstract
Background We aimed to explor the therapeutic effect and molecular mechanism of licochalcone A (LCA) on colon cancer. Methods This study was carried out in 2020-2021 in Nanjing Tongren Hospital, China. Colon cancer HCT116 cells were treated with different concentrations of LCA. Cell counting kit-8, colony formation and flow cytometry assays were used to analyze cell viability, proliferation and apoptosis. Wound healing and transwell experiments were used to measure cell migration and invasion ability. The expression of ADAM9 and apoptosis-related proteins in different LCA treatment groups was detected by western blot. HCT116 cells were transfected with ADAM9 small interfering RNAs (siRNAs) or overexpression vectors. The database screened the upstream miRNA targeting ADAM9 and predicted the targeted binding site between miR-1270 and ADAM9, which was verified by a dual-luciferase reporter assay. Rescue experiments were performed to confirm the effects of the miR-1270/ADAM9 axis on cell proliferation and metastasis. Results LCA decreased cell growth (P<0.05), migration (P<0.05), and invasion (P<0.05) of colon cancer cells and inhibited ADAM9 expression in a dose-dependent manner. LCA affected the functions of colon cancer cells by negatively regulating the expression of ADAM9. MiR-1270, increased by LCA, targeted and suppressed ADAM9 expression significantly (P<0.001). ADAM9 overexpression restrained miR-1270 mimic and LCA-induced changes in cell proliferation, migration, and invasion, and promoted apoptosis in HCT116 cells significantly (P<0.01). LCA and miR-1270 mimic inactivated the Akt/NF-κB pathway, while ADAM9 over-expression rescued it. Conclusion LCA exhibited antitumor efficacy in HCT116 cells by inhibiting the Akt/NF-κB signaling pathway by regulating the miR-1270/ADAM9 axis.
Collapse
Affiliation(s)
- Changhai Pan
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| | - Hongjin Chen
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| | - Bolin Yang
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
8
|
Albaqami JJ, Benny TP, Hamdi H, Altemimi AB, Kuttithodi AM, Job JT, Sasidharan A, Narayanankutty A. Phytochemical Composition and In Vitro Antioxidant, Anti-Inflammatory, Anticancer, and Enzyme-Inhibitory Activities of Artemisia nilagirica (C.B. Clarke) Pamp. Molecules 2022; 27:7119. [PMID: 36296712 PMCID: PMC9611367 DOI: 10.3390/molecules27207119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 12/02/2022] Open
Abstract
Plants have been employed in therapeutic applications against various infectious and chronic diseases from ancient times. Various traditional medicines and folk systems have utilized numerous plants and plant products, which act as sources of drug candidates for modern medicine. Artemisia is a genus of the Asteraceae family with more than 500 species; however, many of these species are less explored for their biological efficacy, and several others are lacking scientific explanations for their uses. Artemisia nilagirica is a plant that is widely found in the Western Ghats, Kerala, India and is a prominent member of the genus. In the current study, the phytochemical composition and the antioxidant, enzyme-inhibitory, anti-inflammatory, and anticancer activities were examined. The results indicated that the ethanol extract of A. nilagirica indicated in vitro DPPH scavenging (23.12 ± 1.28 µg/mL), ABTS scavenging (27.44 ± 1.88 µg/mL), H2O2 scavenging (12.92 ± 1.05 µg/mL), and FRAP (5.42 ± 0.19 µg/mL). The anti-inflammatory effect was also noticed in the Raw 264.7 macrophages, where pretreatment with the extract reduced the LPS-stimulated production of cytokines (p < 0.05). A. nilagirica was also efficient in inhibiting the activities of α-amylase (38.42 ± 2.71 µg/mL), α-glucosidase (55.31 ± 2.16 µg/mL), aldose reductase (17.42 ± 0.87 µg/mL), and sorbitol dehydrogenase (29.57 ± 1.46 µg/mL). It also induced significant inhibition of proliferation in breast (MCF7 IC50 = 41.79 ± 1.07, MDAMB231 IC50 = 55.37 ± 2.11µg/mL) and colon (49.57 ± 1.46 µg/mL) cancer cells. The results of the phytochemical screening indicated a higher level of polyphenols and flavonoids in the extract and the LCMS analysis revealed the presence of various bioactive constituents including artemisinin.
Collapse
Affiliation(s)
- Jawaher J. Albaqami
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Tancia P. Benny
- Division of Cell and Molecular Biology, PG and Research Department of Zoology, St. Joseph’s College (Autonomous), Devagiri, Calicut 673 008, Kerala, India
| | - Hamida Hamdi
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ammar B. Altemimi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq
- College of Medicine, University of Warith Al-Anbiyaa, Karbala 56001, Iraq
| | - Aswathi Moothakoottil Kuttithodi
- Division of Cell and Molecular Biology, PG and Research Department of Zoology, St. Joseph’s College (Autonomous), Devagiri, Calicut 673 008, Kerala, India
| | - Joice Tom Job
- Division of Cell and Molecular Biology, PG and Research Department of Zoology, St. Joseph’s College (Autonomous), Devagiri, Calicut 673 008, Kerala, India
| | - Anju Sasidharan
- Division of Cell and Molecular Biology, PG and Research Department of Zoology, St. Joseph’s College (Autonomous), Devagiri, Calicut 673 008, Kerala, India
| | - Arunaksharan Narayanankutty
- Division of Cell and Molecular Biology, PG and Research Department of Zoology, St. Joseph’s College (Autonomous), Devagiri, Calicut 673 008, Kerala, India
| |
Collapse
|