1
|
Aljohmani A, Heinze H, Gharzia FG, Reda B, Abdrabou AMM, Becker SL, Bischoff M, Hannig M, Yildiz D. Extracellular Release of a Disintegrin and Metalloproteinase Correlates With Periodontal Disease Severity. J Clin Periodontol 2025; 52:237-248. [PMID: 39317350 PMCID: PMC11743067 DOI: 10.1111/jcpe.14073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 08/05/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024]
Abstract
AIM Periodontal disease is driven by oral pathogens, including Porphyromonas gingivalis, and the release of inflammatory cytokines. These cytokines (e.g., TNF) or their receptors (e.g., IL-1R) are substrates of a disintegrin and metalloproteinases (ADAMs). In this study, we aimed to determine the effects of ADAMs on periodontal disease phenotypes. MATERIALS AND METHODS Western blot and FRET-based activity measurements of the gingival crevicular fluid (GCF) of patients were compared with those of infected (P. gingivalis) or cytokine-stimulated oral keratinocytes and primary human neutrophils, respectively. This was accompanied by an analysis of the released extracellular vesicles and MMP9 activity. RESULTS In the GCF of patients, ADAM8 protein expression and activity were correlated with disease stage, whereas ADAM10 protein expression was inversely correlated with disease stage. Infection and the resulting cytokine release orchestrated the release of soluble ADAM8 by oral keratinocytes and primary neutrophils as soluble ectodomain and on exosomes, respectively. Furthermore, ADAM8 regulated the release of ADAM10 and MMP9. CONCLUSION Dysregulation of cell-associated and extracellular ADAM proteolytic activity may be an essential regulatory element in the progression of periodontal disease driven by ADAM8. The influence of ADAM8 on disease onset and the evaluation of targeting ADAM8 as a potential and novel local treatment option should be addressed in future translational in vivo studies.
Collapse
Affiliation(s)
- Ahmad Aljohmani
- Institute of Experimental and Clinical Pharmacology and Toxicology, PZMS, ZHMBSaarland UniversityHomburgGermany
| | - Hakon Heinze
- Institute of Experimental and Clinical Pharmacology and Toxicology, PZMS, ZHMBSaarland UniversityHomburgGermany
| | - Federico Guillermo Gharzia
- Institute of Experimental and Clinical Pharmacology and Toxicology, PZMS, ZHMBSaarland UniversityHomburgGermany
| | - Bashar Reda
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital SaarlandSaarland UniversityHomburgGermany
- Department of Periodontology, School of DentistryAl‐Shahbaa Private UniversityAleppoSyria
| | - Ahmed Mohamed Mostafa Abdrabou
- Institute of Medical Microbiology and HygieneSaarland UniversityHomburgGermany
- Medical Microbiology and Immunology Department, Faculty of MedicineMansoura UniversityMansouraEgypt
| | - Sören L. Becker
- Institute of Medical Microbiology and HygieneSaarland UniversityHomburgGermany
| | - Markus Bischoff
- Institute of Medical Microbiology and HygieneSaarland UniversityHomburgGermany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital SaarlandSaarland UniversityHomburgGermany
| | - Daniela Yildiz
- Institute of Experimental and Clinical Pharmacology and Toxicology, PZMS, ZHMBSaarland UniversityHomburgGermany
| |
Collapse
|
2
|
Cook L, Gharzia FG, Bartsch JW, Yildiz D. A jack of all trades - ADAM8 as a signaling hub in inflammation and cancer. FEBS J 2024; 291:3989-4008. [PMID: 38097912 DOI: 10.1111/febs.17034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/23/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
As a member of the family of A Disintegrin And Metalloproteinases (ADAM) ADAM8 is preferentially expressed in lymphatic organs, immune cells, and tumor cells. The substrate spectrum for ADAM8 proteolytic activity is not exclusive but is related to effectors of inflammation and signaling in the tumor microenvironment. In addition, complexes of ADAM8 with extracellular binding partners such as integrin β-1 cause an extensive intracellular signaling in tumor cells, thereby activating kinase pathways with STAT3, ERK1/2, and Akt signaling, which causes increased cell survival and enhanced motility. The cytoplasmic domain of ADAM8 harbors five SRC homology-3 (SH3) domains that can potentially interact with several proteins involved in actin dynamics and cell motility, including Myosin 1F (MYO1F), which is essential for neutrophil motility. The concept of ADAM8 thus involves immune cell recruitment, in most cases leading to an enhancement of inflammatory (asthma, COPD) and tumor (including pancreatic and breast cancers) pathologies. In this review, we report on available studies that qualify ADAM8 as a therapeutic target in different pathologies. As a signaling hub, ADAM8 controls extracellular, intracellular, and intercellular communication, the latter one mainly mediated by the release of extracellular vesicles with ADAM8 as cargo. Here, we will dissect the contribution of different domains to these distinct ways of communication in several pathologies. We conclude that therapeutic targeting attempts for ADAM8 should consider blocking more than a single domain and that this requires a thorough evaluation of potent molecules targeting ADAM8 in an in vivo setting.
Collapse
Affiliation(s)
- Lena Cook
- Department of Neurosurgery, Philipps University Marburg, Germany
| | - Federico Guillermo Gharzia
- Experimental and Clinical Pharmacology and Toxicology Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps University Marburg, Germany
| | - Daniela Yildiz
- Experimental and Clinical Pharmacology and Toxicology Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| |
Collapse
|
3
|
Ji Z, Guo J, Zhang R, Zuo W, Xu Y, Qu Y, Tao Z, Li X, Li Y, Yao Y, Ma G. ADAM8 deficiency in macrophages promotes cardiac repair after myocardial infarction via ANXA2-mTOR-autophagy pathway. J Adv Res 2024:S2090-1232(24)00322-9. [PMID: 39097092 DOI: 10.1016/j.jare.2024.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024] Open
Abstract
INTRODUCTION A disintegrin and metalloproteinase 8 (ADAM8), a crucial regulator in macrophages, is closely associated with cardiovascular disease progression. OBJECTIVES This study aimed to explore how ADAM8 regulates macrophage function to inhibit cardiac repair after myocardial infarction (MI). METHODS Macrophage-specific ADAM8 knockout mice (ADAM8flox/flox, Lyz2-Cre, KO) and corresponding control mice (ADAM8flox/flox, Flox) were established using the CRISPR/Cas9 system. Bone marrow transplantation was performed, and macrophage-specific ADAM8-overexpressing adeno-associated virus (AAV6-CD68-Adam8) was produced. Finally, proteomics, RNA sequencing, and co-immunoprecipitation/mass spectrometry (COIP/MS) were used to explore the underlying mechanisms involved. RESULTS ADAM8 was highly expressed in the plasma of patients with acute myocardial infarction (AMI) and in cardiac macrophages derived from AMI mice. ADAM8 KO mice exhibited enhanced angiogenesis, suppressed inflammation, reduced cardiac fibrosis, and improved cardiac function during AMI, which were reversed by overexpressing macrophage-specific ADAM8 and intervention with the clinical anti-angiogenic biologic bevacizumab. Bone marrow transplantation experiments produced ADAM8 KO phenotypes. RNA sequencing showed that autophagy was activated in bone marrow-derived macrophages (BMDMs) with ADAM8 KO, which was confirmed via p-mTOR Ser2448/mTOR, p62, and LC3II/I detection. Autophagy inactivation suppressed angiogenic factor release and promoted inflammation in BMDMs with ADAM8 KO. Mechanistically, ADAM8 could bind to ANXA2 and promote phosphorylation of the ANXA2 Ser26 site. ADAM8 KO impeded ANXA2 phosphorylation, inhibited mTOR Ser2448 site phosphorylation, and activated autophagy, which were demonstrated using the activation or inactivation of ANXA2 phosphorylation. CONCLUSIONS ADAM8 was increased in cardiac macrophages after AMI. The ADAM8-ANXA2-mTOR-autophagy axis in macrophages is responsible for regulating angiogenesis and inflammation following MI. Thus, ADAM8 may be a new target in MI treatment.
Collapse
Affiliation(s)
- Zhenjun Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Jiaqi Guo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Rui Zhang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Wenjie Zuo
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330008, Jiangxi, China
| | - Yang Xu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Yangyang Qu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Zaixiao Tao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Xinxin Li
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Yongjun Li
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Yuyu Yao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China.
| |
Collapse
|
4
|
Wei F, Liu H, Wang Y, Li Y, Han S. Engineering macrophages and their derivatives: A new hope for antitumor therapy. Biomed Pharmacother 2024; 177:116925. [PMID: 38878637 DOI: 10.1016/j.biopha.2024.116925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/01/2024] [Accepted: 06/09/2024] [Indexed: 07/28/2024] Open
Abstract
Macrophages are central to the immune system and are found in nearly all tissues. Recently, the development of therapies based on macrophages has attracted significant interest. These therapies utilize macrophages' key roles in immunity, their ability to navigate biological barriers, and their tendency to accumulate in tumors. This review explores the advancement of macrophage-based treatments. We discuss the bioengineering of macrophages for improved anti-tumor effects, the use of CAR macrophage therapy for targeting cancer cells, and macrophages as vehicles for therapeutic delivery. Additionally, we examine engineered macrophage products, like extracellular vesicles and membrane-coated nanoparticles, for their potential in precise and less toxic tumor therapy. Challenges in moving these therapies from research to clinical practice are also highlighted. The aim is to succinctly summarize the current status, challenges, and future directions of engineered macrophages in cancer therapy.
Collapse
Affiliation(s)
- Fang Wei
- Department of General surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning Province 110032, China
| | - Haiyang Liu
- Department of General surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning Province 110032, China
| | - Yuxiao Wang
- Anesthesia Department, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning Province 110032, China
| | - Yan Li
- Department of General surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning Province 110032, China.
| | - Shuo Han
- Department of Cardiology, the Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning Province 110032, China.
| |
Collapse
|
5
|
Cosenza-Contreras M, Schäfer A, Sing J, Cook L, Stillger MN, Chen CY, Villacorta Hidalgo J, Pinter N, Meyer L, Werner T, Bug D, Haberl Z, Kübeck O, Zhao K, Stei S, Gafencu AV, Ionita R, Brehar FM, Ferrer-Lozano J, Ribas G, Cerdá-Alberich L, Martí-Bonmatí L, Nimsky C, Van Straaten A, Biniossek ML, Föll M, Cabezas-Wallscheid N, Büscher J, Röst H, Arnoux A, Bartsch JW, Schilling O. Proteometabolomics of initial and recurrent glioblastoma highlights an increased immune cell signature with altered lipid metabolism. Neuro Oncol 2024; 26:488-502. [PMID: 37882631 PMCID: PMC10912002 DOI: 10.1093/neuonc/noad208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND There is an urgent need to better understand the mechanisms associated with the development, progression, and onset of recurrence after initial surgery in glioblastoma (GBM). The use of integrative phenotype-focused -omics technologies such as proteomics and lipidomics provides an unbiased approach to explore the molecular evolution of the tumor and its associated environment. METHODS We assembled a cohort of patient-matched initial (iGBM) and recurrent (rGBM) specimens of resected GBM. Proteome and metabolome composition were determined by mass spectrometry-based techniques. We performed neutrophil-GBM cell coculture experiments to evaluate the behavior of rGBM-enriched proteins in the tumor microenvironment. ELISA-based quantitation of candidate proteins was performed to test the association of their plasma concentrations in iGBM with the onset of recurrence. RESULTS Proteomic profiles reflect increased immune cell infiltration and extracellular matrix reorganization in rGBM. ASAH1, SYMN, and GPNMB were highly enriched proteins in rGBM. Lipidomics indicates the downregulation of ceramides in rGBM. Cell analyses suggest a role for ASAH1 in neutrophils and its localization in extracellular traps. Plasma concentrations of ASAH1 and SYNM show an association with time to recurrence. CONCLUSIONS We describe the potential importance of ASAH1 in tumor progression and development of rGBM via metabolic rearrangement and showcase the feedback from the tumor microenvironment to plasma proteome profiles. We report the potential of ASAH1 and SYNM as plasma markers of rGBM progression. The published datasets can be considered as a resource for further functional and biomarker studies involving additional -omics technologies.
Collapse
Affiliation(s)
- Miguel Cosenza-Contreras
- Institute of Surgical Pathology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Agnes Schäfer
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Justin Sing
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Lena Cook
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Maren N Stillger
- Institute of Surgical Pathology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Chia-Yi Chen
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Jose Villacorta Hidalgo
- Institute of Surgical Pathology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Niko Pinter
- Institute of Surgical Pathology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Larissa Meyer
- Institute of Surgical Pathology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Tilman Werner
- Institute of Surgical Pathology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Darleen Bug
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Zeno Haberl
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Oliver Kübeck
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Kai Zhao
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Susanne Stei
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Anca Violeta Gafencu
- Institute of Cellular Biology and Pathology “ Nicolae Simionescu,”Bucharest, Romania
| | - Radu Ionita
- Institute of Cellular Biology and Pathology “ Nicolae Simionescu,”Bucharest, Romania
| | - Felix M Brehar
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Bagdasar-Arseni” Emergency Clinical Hospital, Bucharest, Romania
| | - Jaime Ferrer-Lozano
- Department of Pathology Hospital Universitari i Politècnic La Fe, València, Spain
| | - Gloria Ribas
- Biomedical Imaging Research Group (GIBI230) Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Leo Cerdá-Alberich
- Biomedical Imaging Research Group (GIBI230) Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Luis Martí-Bonmatí
- Department of Pathology Hospital Universitari i Politècnic La Fe, València, Spain
- Department of Radiology Hospital Universitari i Politècnic La Fe, València, Spain
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Alexis Van Straaten
- Department of medical informatics and evaluation of practices, Assistance Publique-Hôpitaux de Paris Centre, Paris University & European Hospital Georges Pompidou, Paris, France
| | - Martin L Biniossek
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Melanie Föll
- Institute of Surgical Pathology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Khoury College of Computer Sciences, Northeastern University, Boston, USA
| | | | - Jörg Büscher
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Hannes Röst
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Armelle Arnoux
- Clinical Epidemiology INSERM & Clinical Research Unit, Assistance Publique-Hôpitaux de Paris Centre, Paris University & European Hospital Georges Pompidou, Paris, France
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Zhao K, Calero-Pérez P, Bopp MHA, Möschl V, Pagenstecher A, Mulero-Acevedo M, Vázquez M, Barcia C, Arús C, Nimsky C, Rusch T, Bartsch JW, Candiota AP. Correlation of MR-Based Metabolomics and Molecular Profiling in the Tumor Microenvironment of Temozolomide-Treated Orthotopic GL261 Glioblastoma in Mice. Int J Mol Sci 2023; 24:17628. [PMID: 38139457 PMCID: PMC10743933 DOI: 10.3390/ijms242417628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The tumor microenvironment in glioblastoma (GB) is considered to be "cold", i.e., the fraction of cytotoxic T cells, for instance, is low. Instead, macrophages are the major immune cell population in GB, which stem either from tissue response (resident microglia) or recruitment of macrophages from the periphery, thereby undergoing tumor-dependent "imprinting" mechanisms by which macrophages can adapt a tumor-supportive phenotype. In this regard, it is important to describe the nature of macrophages associated with GB, in particular under therapy conditions using the gold standard chemotherapy drug temozolomide (TMZ). Here, we explored the suitability of combining information from in vivo magnetic resonance spectroscopic (MRS) approaches (metabolomics) with in vitro molecular analyses to assess therapy response and characterize macrophage populations in mouse GB using an isogenic GL261 model. For macrophage profiling, expression levels of matrix metalloproteinases (MMPs) and A disintegrin and metalloproteinases (ADAMs) were determined, since their gene products affect macrophage-tumor cell communication by extensive cleavage of immunomodulatory membrane proteins, such as PD-L1. In tumor mice with an overall therapy response, expression of genes encoding the proteases ADAM8, ADAM10, and ADAM17 was increased and might contribute to the immunosuppressive phenotype of GB and immune cells. In tumors responding to therapy, expression levels of ADAM8 were upregulated by TMZ, and higher levels of PD-L1 were correlated significantly. Using a CRISPR/Cas9 knockout of ADAM8 in GL261 cells, we demonstrated that soluble PD-L1 (sPD-L1) is only generated in the presence of ADAM8. Moreover, primary macrophages from WT and ADAM8-deficient mice showed ADAM8-dependent release of sPD-L1, independent of the macrophage polarization state. Since ADAM8 expression is induced in responding tumors and PD-L1 shedding is likely to decrease the anti-tumor activities of T-cells, we conclude that immunotherapy resistance is caused, at least in part, by the increased presence of proteases, such as ADAM8.
Collapse
Affiliation(s)
- Kai Zhao
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany; (K.Z.); (M.H.A.B.); (C.N.)
| | - Pilar Calero-Pérez
- Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (P.C.-P.); (M.M.-A.); (M.V.); (C.B.); (C.A.)
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina, 08193 Cerdanyola del Vallès, Spain
| | - Miriam H. A. Bopp
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany; (K.Z.); (M.H.A.B.); (C.N.)
- Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Strasse 6, 35032 Marburg, Germany;
| | - Vincent Möschl
- Department of Neuropathology, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany;
| | - Axel Pagenstecher
- Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Strasse 6, 35032 Marburg, Germany;
- Department of Neuropathology, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany;
- Department of Neuropathology, Core Facility Mouse Pathology and Electron Microscopy, Philipps-University Marburg, 35037 Marburg, Germany
| | - Marta Mulero-Acevedo
- Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (P.C.-P.); (M.M.-A.); (M.V.); (C.B.); (C.A.)
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina, 08193 Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Mario Vázquez
- Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (P.C.-P.); (M.M.-A.); (M.V.); (C.B.); (C.A.)
- Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Carlos Barcia
- Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (P.C.-P.); (M.M.-A.); (M.V.); (C.B.); (C.A.)
- Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Carles Arús
- Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (P.C.-P.); (M.M.-A.); (M.V.); (C.B.); (C.A.)
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina, 08193 Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany; (K.Z.); (M.H.A.B.); (C.N.)
- Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Strasse 6, 35032 Marburg, Germany;
| | - Tillmann Rusch
- Department of Hematology, Oncology and Immunology, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany;
| | - Jörg W. Bartsch
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany; (K.Z.); (M.H.A.B.); (C.N.)
- Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Strasse 6, 35032 Marburg, Germany;
| | - Ana Paula Candiota
- Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (P.C.-P.); (M.M.-A.); (M.V.); (C.B.); (C.A.)
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina, 08193 Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
7
|
Hayn A, Fischer T, Mierke CT. The role of ADAM8 in the mechanophenotype of MDA-MB-231 breast cancer cells in 3D extracellular matrices. Front Cell Dev Biol 2023; 11:1148162. [PMID: 37287457 PMCID: PMC10242107 DOI: 10.3389/fcell.2023.1148162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/11/2023] [Indexed: 06/09/2023] Open
Abstract
The majority of investigations of cancer cells have been performed in an oversimplified 2D in vitro environment. In the last decade there is a trend toward more sophisticated 3D in vitro cell culture model systems that can bridge the existing gap between 2D in vitro and in vivo experiments in the field of biophysical and cell biological cancer cell research. Here, we hypothesize that the bidirectional interplay between breast cancer cells and their tumor microenvironment is critical for the outcome of the disease. Thereby, the tissue remodeling processes evoked by cancer cells are important for cancer cell-driven mechanical probing of their matrix environment and on cancer cell adhesion and motility. When remodeling processes have been explored, the emphasis was placed on matrix metalloproteinases and rather not on a disintegrin and metalloproteases (ADAMs). However, the role of ADAM8 in cell mechanics regulating cellular motility in 3D collagen matrices is still unclear. Thus, in this study, we focus on the function of ADAM8 in matrix remodeling and migration of 3D extracellular matrix scaffolds. Therefore, human MDA-MB-231 breast carcinoma cells with ADAM8 knocked down, referred to as ADAM8-KD cells, as well as MDA-MB-231 scrambled control cells, referred to as ADAM8-Ctrl cells, have been used to examine their ability to interact with and migrate in dense extracellular 3D matrices. The fiber displacements, as the capacity of cells to deform the environmental 3D matrix scaffold, has been observed. ADAM8-KD cells displace collagen fibers more strongly than ADAM8-Ctrl cells. Moreover, ADAM8-KD cells migrated more numerous in 3D collagen matrices compared to ADAM8-Ctrl cells. The impairment of ADAM8 using the ADAM8 inhibitor BK-1361 led to significantly increased fiber displacements of ADAM8-Ctrl cells to the levels of ADAM8-KD cells. In contrast, the inhibitor had no effect on ADAM8-KD cells in terms of fiber displacements as well as on the quantitative characteristics of cell invasion of ADAM8-Ctrl cells, albeit the cells that were found in the matrix invaded considerably deeper. When matrix remodeling by cells is impaired through GM6001, a broad-band metalloproteinase inhibitor, the fiber displacements of both cell types increased. In fact, ADAM8 is known to degrade fibronectin in a direct and/or indirect manner. The supplementation of fibronectin before polymerization of the 3D collagen matrices caused an enhancement in fiber displacements as well as in cell invasion into fibronectin-collagen matrices of ADAM8-Ctrl cells, whereas the fiber displacements of ADAM8-KD cells did not change. However, fibrinogen and laminin supplementation induced an increase in fiber displacements of both cell types. Thus, the impact of fibronectin on selective increase in fiber displacement of ADAM8-Ctrl cells appears to be ADAM8-dependent. As a consequence, the presence of ADAM8 may provide an explanation for the longstanding controversial results of fibronectin enrichment on malignant progression of cancers such as breast cancer. Finally, ADAM8 is apparently essential for providing cell-driven fiber displacements of the extracellular matrix microenvironment, which fosters 3D motility in a fibronectin-rich environment. Contribution to the field. Currently, the role of ADAM8 has been explored in 2D or at maximum 2.5D in vitro cell culture motility assays. However, the mechanical characteristics of these two cell types have not been examined. In this study, the function of ADAM8 in breast cancer is refined by providing in vitro cell investigations in 3D collagen fiber matrices of various conditions. ADAM8 has been shown to be involved in the reduced generation of fiber displacements and in influencing breast cancer cell migration. However, especially in the presence of fibronectin in 3Dcollagen fiber matrices, the fiber displacements of ADAM8-Ctrl cells are increased.
Collapse
|
8
|
Mierke CT. The versatile roles of ADAM8 in cancer cell migration, mechanics, and extracellular matrix remodeling. Front Cell Dev Biol 2023; 11:1130823. [PMID: 36910158 PMCID: PMC9995898 DOI: 10.3389/fcell.2023.1130823] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
The posttranslational proteolytic cleavage is a unique and irreversible process that governs the function and half-life of numerous proteins. Thereby the role of the family of A disintegrin and metalloproteases (ADAMs) plays a leading part. A member of this family, ADAM8, has gained attention in regulating disorders, such as neurogenerative diseases, immune function and cancer, by attenuating the function of proteins nearby the extracellular membrane leaflet. This process of "ectodomain shedding" can alter the turnover rate of a number of transmembrane proteins that function in cell adhesion and receptor signal transduction. In the past, the major focus of research about ADAMs have been on neurogenerative diseases, such as Alzheimer, however, there seems to be evidence for a connection between ADAM8 and cancer. The role of ADAMs in the field of cancer research has gained recent attention, but it has been not yet been extensively addressed. Thus, this review article highlights the various roles of ADAM8 with particular emphasis on pathological conditions, such as cancer and malignant cancer progression. Here, the shedding function, direct and indirect matrix degradation, effects on cancer cell mobility and transmigration, and the interplay of ADAM8 with matrix-embedded neighboring cells are presented and discussed. Moreover, the most probable mechanical impact of ADAM8 on cancer cells and their matrix environment is addressed and debated. In summary, this review presents recent advances in substrates/ligands and functions of ADAM8 in its new role in cancer and its potential link to cell mechanical properties and discusses matrix mechanics modifying properties. A deeper comprehension of the regulatory mechanisms governing the expression, subcellular localization, and activity of ADAM8 is expected to reveal appropriate drug targets that will permit a more tailored and fine-tuned modification of its proteolytic activity in cancer development and metastasis.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Biological Physics Division, Peter Debye Institute of Soft Matter Physics, Leipzig University, Leipzig, Germany
| |
Collapse
|
9
|
Otte K, Zhao K, Braun M, Neubauer A, Raifer H, Helmprobst F, Barrera FO, Nimsky C, Bartsch JW, Rusch T. Eltanexor Effectively Reduces Viability of Glioblastoma and Glioblastoma Stem-Like Cells at Nano-Molar Concentrations and Sensitizes to Radiotherapy and Temozolomide. Biomedicines 2022; 10:biomedicines10092145. [PMID: 36140245 PMCID: PMC9496210 DOI: 10.3390/biomedicines10092145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 11/29/2022] Open
Abstract
Current standard adjuvant therapy of glioblastoma multiforme (GBM) using temozolomide (TMZ) frequently fails due to therapy resistance. Thus, novel therapeutic approaches are highly demanded. We tested the therapeutic efficacy of the second-generation XPO1 inhibitor Eltanexor using assays for cell viability and apoptosis in GBM cell lines and GBM stem-like cells. For most GBM-derived cells, IC50 concentrations for Eltanexor were below 100 nM. In correlation with reduced cell viability, apoptosis rates were significantly increased. GBM stem-like cells presented a combinatorial effect of Eltanexor with TMZ on cell viability. Furthermore, pretreatment of GBM cell lines with Eltanexor significantly enhanced radiosensitivity in vitro. To explore the mechanism of apoptosis induction by Eltanexor, TP53-dependent genes were analyzed at the mRNA and protein level. Eltanexor caused induction of TP53-related genes, TP53i3, PUMA, CDKN1A, and PML on both mRNA and protein level. Immunofluorescence of GBM cell lines treated with Eltanexor revealed a strong accumulation of CDKN1A, and, to a lesser extent, of p53 and Tp53i3 in cell nuclei as a plausible mechanism for Eltanexor-induced apoptosis. From these data, we conclude that monotherapy with Eltanexor effectively induces apoptosis in GBM cells and can be combined with current adjuvant therapies to provide a more effective therapy of GBM.
Collapse
Affiliation(s)
- Katharina Otte
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Kai Zhao
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Madita Braun
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Andreas Neubauer
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Hartmann Raifer
- FACS Core Facility, Philipps University Marburg, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany
| | - Frederik Helmprobst
- Department of Neuropathology, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Felipe Ovalle Barrera
- Department of Neuropathology, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Jörg W. Bartsch
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Tillmann Rusch
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
- Correspondence: ; Tel.: +49-6421-58-65625
| |
Collapse
|
10
|
Krstic J, Deutsch A, Fuchs J, Gauster M, Gorsek Sparovec T, Hiden U, Krappinger JC, Moser G, Pansy K, Szmyra M, Gold D, Feichtinger J, Huppertz B. (Dis)similarities between the Decidual and Tumor Microenvironment. Biomedicines 2022; 10:1065. [PMID: 35625802 PMCID: PMC9138511 DOI: 10.3390/biomedicines10051065] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 02/05/2023] Open
Abstract
Placenta-specific trophoblast and tumor cells exhibit many common characteristics. Trophoblast cells invade maternal tissues while being tolerated by the maternal immune system. Similarly, tumor cells can invade surrounding tissues and escape the immune system. Importantly, both trophoblast and tumor cells are supported by an abetting microenvironment, which influences invasion, angiogenesis, and immune tolerance/evasion, among others. However, in contrast to tumor cells, the metabolic, proliferative, migrative, and invasive states of trophoblast cells are under tight regulatory control. In this review, we provide an overview of similarities and dissimilarities in regulatory processes that drive trophoblast and tumor cell fate, particularly focusing on the role of the abetting microenvironments.
Collapse
Affiliation(s)
- Jelena Krstic
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Alexander Deutsch
- Division of Hematology, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria; (A.D.); (K.P.); (M.S.)
| | - Julia Fuchs
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
- Division of Biophysics, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Tina Gorsek Sparovec
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria; (T.G.S.); (U.H.); (D.G.)
| | - Ursula Hiden
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria; (T.G.S.); (U.H.); (D.G.)
| | - Julian Christopher Krappinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Gerit Moser
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Katrin Pansy
- Division of Hematology, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria; (A.D.); (K.P.); (M.S.)
| | - Marta Szmyra
- Division of Hematology, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria; (A.D.); (K.P.); (M.S.)
| | - Daniela Gold
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria; (T.G.S.); (U.H.); (D.G.)
| | - Julia Feichtinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| |
Collapse
|
11
|
Kos J. Proteases: Role and Function in Cancer. Int J Mol Sci 2022; 23:ijms23094632. [PMID: 35563022 PMCID: PMC9102717 DOI: 10.3390/ijms23094632] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Janko Kos
- Department of Biotechnology, Faculty of Pharmacy, Jožef Stefan Institute, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|