1
|
Garg D, Samota MK, Kontis N, Patel N, Bala S, Rosado AS. Revolutionizing biofuel generation: Unleashing the power of CRISPR-Cas mediated gene editing of extremophiles. Microbiol Res 2023; 274:127443. [PMID: 37399654 DOI: 10.1016/j.micres.2023.127443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/05/2023]
Abstract
Molecular biology techniques like gene editing have altered the specific genes in micro-organisms to increase their efficiency to produce biofuels. This review paper investigates the outcomes of Clustered regularly interspaced short palindromic repeats (CRISPR) for gene editing in extremophilic micro-organisms to produce biofuel. Commercial production of biofuel from lignocellulosic waste is limited due to various constraints. A potential strategy to enhance the capability of extremophiles to produce biofuel is gene-editing via CRISPR-Cas technology. The efficiency of intracellular enzymes like cellulase, hemicellulose in extremophilic bacteria, fungi and microalgae has been increased by alteration of genes associated with enzymatic activity and thermotolerance. extremophilic microbes like Thermococcus kodakarensis, Thermotoga maritima, Thermus thermophilus, Pyrococcus furiosus and Sulfolobus sp. are explored for biofuel production. The conversion of lignocellulosic biomass into biofuels involves pretreatment, hydrolysis and fermentation. The challenges like off-target effect associated with use of extremophiles for biofuel production is also addressed. The appropriate regulations are required to maximize effectiveness while minimizing off-target cleavage, as well as the total biosafety of this technique. The latest discovery of the CRISPR-Cas system should provide a new channel in the creation of microbial biorefineries through site- specific gene editing that might boost the generation of biofuels from extremophiles. Overall, this review study highlights the potential for genome editing methods to improve the potential of extremophiles to produce biofuel, opening the door to more effective and environmentally friendly biofuel production methods.
Collapse
Affiliation(s)
- Diksha Garg
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
| | | | - Nicholas Kontis
- Red Sea Research Center, Biological and Environmental Science and Engineering Division,King Abdullah University of Science and Technology, Thuwal, Makkah 23955, Saudi Arabia; Computational Bioscience Research Center, Biological and Environmental Science and, Engineering Division, King Abdullah University of Science and Technology, Thuwal, Makkah 23955, Saudi Arabia
| | - Niketan Patel
- Red Sea Research Center, Biological and Environmental Science and Engineering Division,King Abdullah University of Science and Technology, Thuwal, Makkah 23955, Saudi Arabia; Computational Bioscience Research Center, Biological and Environmental Science and, Engineering Division, King Abdullah University of Science and Technology, Thuwal, Makkah 23955, Saudi Arabia
| | - Saroj Bala
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
| | - Alexandre Soares Rosado
- Red Sea Research Center, Biological and Environmental Science and Engineering Division,King Abdullah University of Science and Technology, Thuwal, Makkah 23955, Saudi Arabia; Computational Bioscience Research Center, Biological and Environmental Science and, Engineering Division, King Abdullah University of Science and Technology, Thuwal, Makkah 23955, Saudi Arabia.
| |
Collapse
|
2
|
Investigation into the chemical modification of α-amylase using octenyl succinic anhydride: enzyme characterisation and stability studies. Bioprocess Biosyst Eng 2023; 46:645-664. [PMID: 36826507 DOI: 10.1007/s00449-023-02850-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/01/2023] [Indexed: 02/25/2023]
Abstract
The present study describes the chemical modification of α-amylase using succinic anhydride (SA), phthalic anhydride (PA) and a novel modifier viz. 2-octenyl succinic anhydride (2-OSA). SA-, PA- and 2-OSA-α-amylases displayed a 50%, 91% and 46% increase in stability at pH 9, respectively; as compared to unmodified α-amylase. PA-α-amylase showed a significant increase in Ea and ΔHa#, and a concomitant decrease in ΔSa#. The modified α-amylases exhibited improved thermostability as reflected by significant reductions in Kd and ΔSd#, and increments in t1/2, D-, Ed, ΔHd# and ΔGd# values. The modified α-amylases displayed variable stabilities in the presence of different surfactants, inhibitors, metal ions and organic solvents. Interestingly, the chemical modification was found to confer resistance against inactivation by Hg2+ on α-amylase. The conformational changes in modified α-amylases were investigated using intrinsic tryptophan fluorescence, ANS (extrinsic) tryptophan fluorescence, and dynamic fluorescence quenching. Both intrinsic and extrinsic tryptophan fluorescence spectra showed increased fluorescence intensity for the modified α-amylases. Chemical modification was found to induce a certain degree of structural rigidity to α-amylase, as shown by dynamic fluorescence quenching. Analysis of the CD spectra by the K2d method using the DichroWeb online tool indicated evident changes in the α-helix, β-sheet and random coil fractions of the α-amylase secondary structure, following chemical modification using anhydrides. PA-α-amylase exhibited the highest productivity in terms of hydrolysis of starch at 60 °C over a period of 5 h indicating potential in varied biotechnological applications.
Collapse
|