1
|
Hu R, Chen F, Yu X, Li Z, Li Y, Feng S, Liu J, Li H, Shen C, Gu X, Lu Z. Construction and validation of a prognostic model of angiogenesis-related genes in multiple myeloma. BMC Cancer 2024; 24:1269. [PMID: 39394121 PMCID: PMC11470605 DOI: 10.1186/s12885-024-13024-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Angiogenesis is associated with tumour growth, infiltration, and metastasis. This study aimed to detect the mechanisms of angiogenesis-related genes (ARGs) in multiple myeloma (MM) and to construct a new prognostic model. METHODS MM research foundation (MMRF)-CoMMpass cohort, GSE47552, GSE57317, and ARGs were sourced from public databases. Differentially expressed genes (DEGs) in the tumour and control cohorts in GSE47552 were determined through differential expression analysis and were enriched with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Weighted gene coexpression network analysis (WGCNA) was applied to derive modules linked to the ARG scores and obtain module genes in GSE47552. Differentially expressed ARGs (DE-ARGs) were selected for subsequent analyses by overlapping DEGs and module genes. Furthermore, prognostic genes were selected using univariate Cox and least absolute shrinkage and selection operator (LASSO) regression analyses. Depending on the prognostic genes, a risk model was constructed, and risk scores were determined. Moreover, MM samples from MMRF-CoMMpass were sorted into high- and low-risk teams on account of the median risk score. Additionally, correlations among clinical characteristics, gene set variation analysis (GSVA), gene set enrichment analysis (GSEA), immune analysis, immunotherapy predictions and the mRNA‒miRNA‒lncRNA network were carried out. RESULTS A total of 898 DEGs, 211 module genes, 24 DE-ARGs and three prognostic genes (AKAP12, C11orf80 and EMP1) were selected for this study. Enrichment analysis revealed that the DEGs were related to 86 GO terms, such as 'cytoplasmic translation', and 41 KEGG pathways, such as 'small cell lung cancer'. A prognostic gene-based risk model was created in MMRF-CoMMpass and confirmed with the GSE57317 dataset. Moreover, a nomogram was established on the basis of independent prognostic factors that have proven to be good predictors. In addition, the immune cell infiltration results suggested that memory B cells were enriched in the high-risk group and that immature B cells were enriched in the low-risk group. Finally, the mRNA‒miRNA‒lncRNA network demonstrated that hsa-miR-508-5p was tightly associated with EMP1 and AKAP12. RT‒qPCR was used to validate the expression of the genes associated with prognosis. CONCLUSION A new prognostic model of MM associated with ARGs was created and validated, providing a new perspective for exploring the connection between ARGs and MM.
Collapse
Affiliation(s)
- Rui Hu
- Department of Hematology, The First People's Hospital of Yunnan Province, Yunnan Province Clinical Research Center for Hematologic Disease, Hu Yu Expert Workstation, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Yunnan Provincial Clinical Medical Center for Blood Diseases and Thrombosis Prevention and Treatment, Kunming, Yunnan, China
| | - Fengyu Chen
- Department of Hematology, The First People's Hospital of Yunnan Province, Yunnan Province Clinical Research Center for Hematologic Disease, Hu Yu Expert Workstation, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Yunnan Provincial Clinical Medical Center for Blood Diseases and Thrombosis Prevention and Treatment, Kunming, Yunnan, China
| | - Xueting Yu
- Department of Endocrinology, 920th Hospital of Joint Logistics Support Force,PLA, Kunming, China
| | - Zengzheng Li
- Department of Hematology, The First People's Hospital of Yunnan Province, Yunnan Province Clinical Research Center for Hematologic Disease, Hu Yu Expert Workstation, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Yunnan Provincial Clinical Medical Center for Blood Diseases and Thrombosis Prevention and Treatment, Kunming, Yunnan, China
| | - Yujin Li
- Department of Hematology, The First People's Hospital of Yunnan Province, Yunnan Province Clinical Research Center for Hematologic Disease, Hu Yu Expert Workstation, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Yunnan Provincial Clinical Medical Center for Blood Diseases and Thrombosis Prevention and Treatment, Kunming, Yunnan, China
| | - Shuai Feng
- Department of Hematology, The First People's Hospital of Yunnan Province, Yunnan Province Clinical Research Center for Hematologic Disease, Hu Yu Expert Workstation, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Yunnan Provincial Clinical Medical Center for Blood Diseases and Thrombosis Prevention and Treatment, Kunming, Yunnan, China
| | - Jianqiong Liu
- Department of Hematology, The First People's Hospital of Yunnan Province, Yunnan Province Clinical Research Center for Hematologic Disease, Hu Yu Expert Workstation, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Yunnan Provincial Clinical Medical Center for Blood Diseases and Thrombosis Prevention and Treatment, Kunming, Yunnan, China
| | - Huiyuan Li
- Department of Hematology, The First People's Hospital of Yunnan Province, Yunnan Province Clinical Research Center for Hematologic Disease, Hu Yu Expert Workstation, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Yunnan Provincial Clinical Medical Center for Blood Diseases and Thrombosis Prevention and Treatment, Kunming, Yunnan, China
| | - Chengmin Shen
- Department of Hematology, The First People's Hospital of Yunnan Province, Yunnan Province Clinical Research Center for Hematologic Disease, Hu Yu Expert Workstation, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Yunnan Provincial Clinical Medical Center for Blood Diseases and Thrombosis Prevention and Treatment, Kunming, Yunnan, China
| | - Xuezhong Gu
- Department of Hematology, The First People's Hospital of Yunnan Province, Yunnan Province Clinical Research Center for Hematologic Disease, Hu Yu Expert Workstation, Kunming, China.
- The Affiliated Hospital of Kunming University of Science and Technology, Yunnan Provincial Clinical Medical Center for Blood Diseases and Thrombosis Prevention and Treatment, Kunming, Yunnan, China.
| | - Zhixiang Lu
- Department of Hematology, The First People's Hospital of Yunnan Province, Yunnan Province Clinical Research Center for Hematologic Disease, Hu Yu Expert Workstation, Kunming, China.
- The Affiliated Hospital of Kunming University of Science and Technology, Yunnan Provincial Clinical Medical Center for Blood Diseases and Thrombosis Prevention and Treatment, Kunming, Yunnan, China.
| |
Collapse
|
2
|
Zhai P, Zhang H, Li Q, Yang M, Guo Y, Xing C. DNMT1-mediated NR3C1 DNA methylation enables transcription activation of connexin40 and augments angiogenesis during colorectal cancer progression. Gene 2024; 892:147887. [PMID: 37813207 DOI: 10.1016/j.gene.2023.147887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/12/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Colorectal cancer (CRC) continues to be a major contributor to cancer-related mortality. Connexin 40 (CX40) is one of the major gap junction proteins with the capacity in regulating cell-to-cell communication and angiogenesis. This study investigates its role in angiogenesis in CRC and explores the regulatory mechanism. Aberrant high CX40 expression was detected in tumor tissues, which was associated with a poor prognosis in CRC patients. Elevated CX40 expression was detected in CRC cell lines as well. Conditioned medium of SW620 and HT29 cell lines was used to induce angiogenesis of human umbilical vein endothelial cells (HUVECs). CX40 knockdown in CRC cells reduced angiogenesis and mobility of HUVECs and blocked CRC cell proliferation, mobility, and survival. Following bioinformatics predictions, we validated by chromatin immunoprecipitation and luciferase assays that nuclear receptor subfamily 3 group C member 1 (NR3C1), which was poorly expressed in CRC samples, suppressed CX40 transcription. The poor NR3C1 expression was attributive to DNA hypermethylation induced by DNA methyltransferase 1 (DNMT1). Restoration of NR3C1 suppressed the pro-angiogenic effect, proliferation and survival, and tumorigenic activity of CRC cells, which were, however, rescued by CX40 upregulation. Collectively, this study demonstrates that transcription activation of CX40 upon DNMT1-mediated NR3C1 DNA methylation potentiates angiogenesis in CRC.
Collapse
Affiliation(s)
- Peng Zhai
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, PR China; Department of General Surgery, Fifth People's Hospital of Huai'an City, Huai'an 223300, Jiangsu, PR China
| | - Heng Zhang
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing 211200, Jiangsu, PR China
| | - Qiang Li
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, PR China; Department of Gerneral Surgery, The Second Afilliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu, PR China
| | - Ming Yang
- Department of General Surgery, Fifth People's Hospital of Huai'an City, Huai'an 223300, Jiangsu, PR China
| | - Yunhu Guo
- Department of General Surgery, Fifth People's Hospital of Huai'an City, Huai'an 223300, Jiangsu, PR China
| | - Chungen Xing
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, PR China.
| |
Collapse
|
3
|
Zhou M, Zheng M, Zhou X, Tian S, Yang X, Ning Y, Li Y, Zhang S. The roles of connexins and gap junctions in the progression of cancer. Cell Commun Signal 2023; 21:8. [PMID: 36639804 PMCID: PMC9837928 DOI: 10.1186/s12964-022-01009-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/03/2022] [Indexed: 01/15/2023] Open
Abstract
Gap junctions (GJs), which are composed of connexins (Cxs), provide channels for direct information exchange between cells. Cx expression has a strong spatial specificity; however, its influence on cell behavior and information exchange between cells cannot be ignored. A variety of factors in organisms can modulate Cxs and subsequently trigger a series of responses that have important effects on cellular behavior. The expression and function of Cxs and the number and function of GJs are in dynamic change. Cxs have been characterized as tumor suppressors in the past, but recent studies have highlighted the critical roles of Cxs and GJs in cancer pathogenesis. The complex mechanism underlying Cx and GJ involvement in cancer development is a major obstacle to the evolution of therapy targeting Cxs. In this paper, we review the post-translational modifications of Cxs, the interactions of Cxs with several chaperone proteins, and the effects of Cxs and GJs on cancer. Video Abstract.
Collapse
Affiliation(s)
- Mingming Zhou
- Graduate School, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin, 300121 People’s Republic of China
| | - Xinyue Zhou
- Graduate School, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Shifeng Tian
- Graduate School, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Xiaohui Yang
- Nankai University School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Yidi Ning
- Nankai University School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Yuwei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121 People’s Republic of China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin, 300121 People’s Republic of China
| |
Collapse
|
4
|
Fang JS, Burt JM. Connexin37 Regulates Cell Cycle in the Vasculature. J Vasc Res 2022; 60:73-86. [PMID: 36067749 DOI: 10.1159/000525619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/08/2022] [Indexed: 11/19/2022] Open
Abstract
Control of vascular cell growth responses is critical for development and maintenance of a healthy vasculature. Connexins - the proteins comprising gap junction channels - are key regulators of cell growth in diseases such as cancer, but their involvement in controlling cell growth in the vasculature is less well appreciated. Connexin37 (Cx37) is one of four connexin isotypes expressed in the vessel wall. Its primary role in blood vessels relies on its unique ability to transduce flow-sensitive signals into changes in cell cycle status of endothelial (and perhaps, mural) cells. Here, we review available evidence for Cx37's role in the regulation of vascular growth, vessel organization, and vascular tone in healthy and diseased vasculature. We propose a novel mechanism whereby Cx37 accomplishes this with a phosphorylation-dependent transition between closed (growth-suppressive) and multiple open (growth-permissive) channel conformations that result from interactions of the C-terminus with cell-cycle regulators to limit or support cell cycle progression. Lastly, we discuss Cx37 and its downstream signaling as a novel potential target in the treatment of cardiovascular disease, and we address outstanding research questions that still challenge the development of such therapies.
Collapse
Affiliation(s)
- Jennifer S Fang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, USA
| | - Janis M Burt
- Department of Physiology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
5
|
Zhou Z, Chai W, Liu Y, Zhou M, Zhang X. Connexins and angiogenesis: Functional aspects, pathogenesis, and emerging therapies (Review). Int J Mol Med 2022; 50:110. [PMID: 35762312 PMCID: PMC9256078 DOI: 10.3892/ijmm.2022.5166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022] Open
Abstract
Connexins (Cxs) play key roles in cellular communication. By facilitating metabolite exchange or interfering with distinct signaling pathways, Cxs affect cell homeostasis, proliferation, and differentiation. Variations in the activity and expression of Cxs have been linked to numerous clinical conditions including carcinomas, cardiac disorders, and wound healing. Recent discoveries on the association between Cxs and angiogenesis have sparked interest in Cx-mediated angiogenesis due to its essential functions in tissue formation, wound repair, tumor growth, and metastasis. It is now widely recognized that understanding the association between Cxs and angiogenesis may aid in the development of new targeted therapies for angiogenic diseases. The aim of the present review was to provide a comprehensive overview of Cxs and Cx-mediated angiogenesis, with a focus on therapeutic implications.
Collapse
Affiliation(s)
- Zizi Zhou
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Wenxiang Chai
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Yi Liu
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Meng Zhou
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Xiaoming Zhang
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| |
Collapse
|