1
|
Wang ZQ, Hao LP, Meng ZX, Zhang HR, Kang WJ, Ai LF. Simultaneous determination of 25(OH)D2, 25(OH)D3 and 1α,25(OH)2D3 in human serum by derivatization-liquid chromatography-tandem mass spectrometry. Anal Biochem 2025; 701:115821. [PMID: 40010585 DOI: 10.1016/j.ab.2025.115821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 02/28/2025]
Abstract
An LC-MS/MS method was developed and validated for simultaneously quantifying 25-hydroxyvitamin D2, D3, and 1α,25-dihydroxyvitamin D3 in human serum. Protein in 200 μL serum was precipitated with acetonitrile. After centrifugation, the metabolites were derivatized using (diacetoxyiodo)benzene (PIA) and 4-(4-dimethylaminophenyl)-1,2,4-triazolidine-3,5-dione (DMAT) and then quantified by the LC-MS/MS system. The limits of detection (LODs) for the three substances were 10, 10, and 5 pg/mL, and the limits of quantification (LOQs) were 20, 20, and 10 pg/mL. The standard curves for these compounds showed linear regression coefficients (R2)>0.998 over specific concentration ranges. Recoveries were 94.36 %-102.34 % for 25(OH)D2, 92.43 %-103.41 % for 25(OH)D3, and 88.98 %-94.36 % for 1α,25(OH)2D3. The mean serum levels in 109 subjects (consisting of 61 healthy adult males and 59 healthy adult females) were 2.0 ± 1.5 ng/ml (25(OH)D2), 16.4 ± 6.1 ng/ml (25(OH)D3) and 36.6 ± 15.1 pg/ml (1α, 25(OH)2D3).Derivatization of vitamin D metabolites using PIA and DMAT is useful for rapidly determining the serum 25(OH) D2, 25(OH) D3 and 1α,25(OH)2D3 concentrations simultaneously in human serum.
Collapse
Affiliation(s)
- Zi-Qing Wang
- School of Public Health, Hebei Medical University, 050017, Hebei, China; Hebei Key Laboratory of Environment and Human Health, 050017, Hebei, China
| | - Li-Ping Hao
- Dingzhou Disease Prevention and Control Centre, 073099, Hebei, China
| | - Zi-Xuan Meng
- School of Public Health, Hebei Medical University, 050017, Hebei, China; Hebei Key Laboratory of Environment and Human Health, 050017, Hebei, China
| | - Hao-Ran Zhang
- Hebei Qianye Biotechnology Co., 050017, Hebei, China
| | - Wei-Jun Kang
- School of Public Health, Hebei Medical University, 050017, Hebei, China; Hebei Key Laboratory of Environment and Human Health, 050017, Hebei, China.
| | - Lian-Feng Ai
- School of Public Health, Hebei Medical University, 050017, Hebei, China; Shijiazhuang Customs Technology Center, 050051, Hebei, China.
| |
Collapse
|
2
|
Niu Y, Meng J, Xue Z, Chen Z. PSMA3-AS1: a promising LncRNA as a diagnostic and prognostic biomarker in human cancers. Gene 2025:149521. [PMID: 40268123 DOI: 10.1016/j.gene.2025.149521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 04/07/2025] [Accepted: 04/18/2025] [Indexed: 04/25/2025]
Abstract
Long non-coding RNAs (lncRNAs) have shown increasing potential as biomarkers and therapeutic targets in cancer. Among them, PSMA3-AS1 has garnered significant attention due to its dysregulated expression in various human malignancies and its involvement in key oncogenic processes. This review offers a comprehensive analysis of PSMA3-AS1, including its expression patterns, molecular mechanisms, and clinical significance across different cancer types. It explores its abnormal expression levels, correlation with clinicopathological characteristics, and roles in promoting cell proliferation, invasion, migration, and epithelial-mesenchymal transition (EMT). The review delves into the molecular pathways through which PSMA3-AS1 exerts its functions, particularly its interactions with microRNAs. Highlighting its strong potential as both a diagnostic and prognostic biomarker, the study underscores the need for further clinical research to fully harness its therapeutic implications. Ultimately, this review aims to consolidate current knowledge on PSMA3-AS1 in human cancers and encourage continued exploration into its utility in innovative diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Yunxia Niu
- Department of Pathology, Pingliang Traditional Chinese Medicine Hospital, Pingliang, Gansu 744603, China
| | - Jinying Meng
- Department of Surgical Oncology, Pingliang Traditional Chinese Medicine Hospital, Pingliang, Gansu 744603, China.
| | - Zhao Xue
- Department of Oncology, The First People's Hospital of Xianyang, Xianyang, Shaanxi 712000, China
| | - Zhi Chen
- Department of Oncology, The First People's Hospital of Xianyang, Xianyang, Shaanxi 712000, China
| |
Collapse
|
3
|
Wakle KS, Karwa PN, Sakle NS. Investigating Vitamin D 3's anticancer mechanisms in MCF-7 cells: a network pharmacology and omics technology approach. Mol Divers 2025:10.1007/s11030-025-11156-z. [PMID: 40146431 DOI: 10.1007/s11030-025-11156-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025]
Abstract
Breast cancer is one of the leading reasons of mortality due to cancer globally. Estrogen receptor-positive (ER +) breast cancer being a significant subtype. The therapeutic potential of Vitamin D3 in cancer treatment has gained attention due to its ability to modulate key molecular targets and signaling pathways. This study investigates the anticancer mechanisms of Vitamin D3 in MCF-7 breast cancer cells using network pharmacology and omics technology approach. Utilizing protein-protein interaction (PPI) networks, we identified several critical protein targets involved in breast cancer progression, including ESR1, ESR2, PGR, IGF1R, and KDR. Pathway enrichment analyses highlighted Vitamin D3's impact on pivotal signaling pathways such as the PI3K/Akt pathway, estrogen receptor signaling, and apoptosis regulation. In vitro studies showed that Vitamin D3 significantly inhibited cell proliferation in MCF-7 cells. It also induced apoptosis and disrupted mitochondrial function. Flow cytometry analysis demonstrated a dose-dependent increase in apoptotic cell death and S-phase cell cycle arrest. Confocal imaging and mitochondrial membrane potential assays further supported the findings, indicating mitochondrial dysfunction and chromatin condensation. Additionally, gene expression analysis in breast invasive carcinoma tissues confirmed the relevance of ESR1 and PGR in hormone receptor-positive breast cancer. Histopathological studies on DMBA-induced mammary carcinoma revealed Vitamin D3's protective effects, reducing tumor malignancy severity through anti-proliferative and pro-apoptotic actions. These findings provide strong evidence for Vitamin D3's potential as a multi-targeted therapeutic agent in breast cancer, suggesting further investigation into its clinical applications and combination strategies with existing therapies as an adjunct or alternative in the treatment.
Collapse
Affiliation(s)
- Komal S Wakle
- Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Aurangabad, Maharashtra, 431001, India
| | - Pawan N Karwa
- Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, 411018, India
| | - Nikhil S Sakle
- Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Aurangabad, Maharashtra, 431001, India.
| |
Collapse
|
4
|
Zhao L, Biswas S, Li Y, Sooranna SR. The emerging roles of LINC00511 in breast cancer development and therapy. Front Oncol 2024; 14:1429262. [PMID: 39206156 PMCID: PMC11349568 DOI: 10.3389/fonc.2024.1429262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Breast cancer (BC) is associated with malignant tumors in women worldwide with persistently high incidence and mortality rates. The traditional therapies including surgery, chemotherapy, radiotherapy and targeted therapy have certain therapeutic effects on BC patients, but acquired drug resistance can lead to tumor recurrence and metastasis. This remains a clinical challenge that is difficult to solve during treatment. Therefore, continued research is needed to identify effective targets and treatment methods, to ultimately implement personalized treatment strategies. Several studies have implicated that the long non-coding RNA LINC00511 is closely linked to the occurrence, development and drug resistance of BC. Here we will review the structure and the mechanisms of action of lnc RNA LINC00511 in various cancers, and then explore its expression and its related regulatory mechanisms during BC. In addition, we will discuss the biological functions and the potential clinical applications of LINC00511 in BC.
Collapse
Affiliation(s)
- Lifeng Zhao
- Department of Oncology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Faculty of Medicine, MAHSA University, Jenjarom, Selangor, Malaysia
| | - Sangita Biswas
- Department of Preclinical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom, Selangor, Malaysia
| | - Yepeng Li
- Department of Oncology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Suren Rao Sooranna
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
- Life Science and Clinical Research Center, Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
5
|
Kim MJ, Lim SG, Cho DH, Lee JY, Suk K, Lee WH. Regulation of inflammatory response by LINC00346 via miR-25-3p-mediated modulation of the PTEN/PI3K/AKT/NF-κB pathway. Biochem Biophys Res Commun 2024; 709:149828. [PMID: 38537596 DOI: 10.1016/j.bbrc.2024.149828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/16/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
Long intergenic non-coding RNA 346 (LINC00346) has been reported to be involved in the development of atherosclerosis and specific cancers by affecting signaling pathways. However, its function in inflammation has not been thoroughly studied. Therefore, its expression pattern and function were determined in the human macrophage-like cell line THP-1. Lipopolysaccharide (LPS) treatment induced the expression of LINC00346. LPS-induced NF-κB activation and proinflammatory cytokine expression were suppressed or enhanced by the overexpression or knockdown of LINC00346, respectively. Analyses using dual luciferase assay and decoy RNAs that could block RNA-RNA interactions indicated that LINC00346 improves phosphatase and tensin homolog (PTEN) expression by sponging miR-25-3p. Subsequently, PTEN suppresses phosphoinositide-3 kinase (PI3K)-mediated conversion of phosphatidylinositol-4,5-bisphosphate (PIP2) into phosphatidylinositol-3,4,5-trisphosphate (PIP3) as well as consequent activation of protein kinase B (AKT) and NF-κB. Interestingly, database analysis revealed that the expression levels of LINC00346 and PTEN were simultaneously decreased in breast cancer tissues. Further analyses conducted using a breast cancer cell line, MDA-MB-231, confirmed the functional relationship among LINC00346, miR-25-3p, and PTEN in LPS-induced activation of NF-κB. These results indicate that miR-25-3p-sponging activity of LINC00346 affects the balance between PTEN and PI3K as well as the downstream activation of AKT/NF-κB pathway in inflammatory conditions.
Collapse
Affiliation(s)
- Min-Ji Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Su-Geun Lim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Dong-Hyung Cho
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jun-Yeong Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 FOUR KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, 41944, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
6
|
Yazarlou F, Alizadeh F, Lipovich L, Giordo R, Ghafouri-Fard S. Tracing vitamins on the long non-coding lane of the transcriptome: vitamin regulation of LncRNAs. GENES & NUTRITION 2024; 19:5. [PMID: 38475720 PMCID: PMC10935982 DOI: 10.1186/s12263-024-00739-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024]
Abstract
A major revelation of genome-scale biological studies in the post-genomic era has been that two-thirds of human genes do not encode proteins. The majority of non-coding RNA transcripts in humans are long non-coding RNA (lncRNA) molecules, non-protein-coding regulatory transcripts with sizes greater than 500 nucleotides. LncRNAs are involved in nearly every aspect of cellular physiology, playing fundamental regulatory roles both in normal cells and in disease. As result, they are functionally linked to multiple human diseases, from cancer to autoimmune, inflammatory, and neurological disorders. Numerous human conditions and diseases stem from gene-environment interactions; in this regard, a wealth of reports demonstrate that the intake of specific and essential nutrients, including vitamins, shapes our transcriptome, with corresponding impacts on health. Vitamins command a vast array of biological activities, acting as coenzymes, antioxidants, hormones, and regulating cellular proliferation and coagulation. Emerging evidence suggests that vitamins and lncRNAs are interconnected through several regulatory axes. This type of interaction is expected, since lncRNA has been implicated in sensing the environment in eukaryotes, conceptually similar to riboswitches and other RNAs that act as molecular sensors in prokaryotes. In this review, we summarize the peer-reviewed literature to date that has reported specific functional linkages between vitamins and lncRNAs, with an emphasis on mammalian models and humans, while providing a brief overview of the source, metabolism, and function of the vitamins most frequently investigated within the context of lncRNA molecular mechanisms, and discussing the published research findings that document specific connections between vitamins and lncRNAs.
Collapse
Affiliation(s)
- Fatemeh Yazarlou
- Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Box 505055, Dubai, United Arab Emirates
| | - Fatemeh Alizadeh
- Department of Genomic Psychiatry and Behavioral Genomics (DGPBG), Roozbeh Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leonard Lipovich
- Department of Biology, College of Science, Mathematics, and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
- Shenzhen Huayuan Biological Science Research Institute, Shenzhen Huayuan Biotechnology Co. Ltd., 601 Building C1, Guangming Science Park, Fenghuang Street, 518000, Shenzhen, Guangdong, People's Republic of China
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, 3222 Scott Hall, 540 E. Canfield St., Detroit, MI, 48201, USA
| | - Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Box 505055, Dubai, United Arab Emirates.
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, Sassari, 07100, Italy.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Torres A, Cameselle C, Otero P, Simal-Gandara J. The Impact of Vitamin D and Its Dietary Supplementation in Breast Cancer Prevention: An Integrative Review. Nutrients 2024; 16:573. [PMID: 38474702 DOI: 10.3390/nu16050573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Vitamin D deficiency is currently a significant public health issue closely linked to numerous diseases, such as breast cancer. This study aims to determine the estimated optimal serum levels of vitamin D to have a protective effect against breast cancer, in addition to exploring the biological mechanisms and risk factors involved. A literature search of articles published in the last 5 years was conducted, and simple statistical analyses using mean and standard deviation were performed to calculate the average concentration of vitamin D from different available studies. It has been observed that serum levels of vitamin D ≥ 40.26 ng/mL ± 14.19 ng/mL could exert a protective effect against breast cancer. Additionally, various biological mechanisms, such as those related to the immune system, and risk factors like diet implicated in this relationship were elucidated. Consequently, it can be concluded that proper serum levels of vitamin D may have a protective effect against breast cancer, and dietary supplementation may be an appropriate procedure to achieve these optimal vitamin D concentrations.
Collapse
Affiliation(s)
- Antía Torres
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, University de Vigo, E-32004 Ourense, Spain
| | - Carla Cameselle
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, University de Vigo, E-32004 Ourense, Spain
| | - Paz Otero
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, University de Vigo, E-32004 Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, University de Vigo, E-32004 Ourense, Spain
| |
Collapse
|
8
|
Jie L, Hengyue W, Ting H. Calcitriol suppresses gastric cancer progression and cisplatin resistance by inhibiting glycolysis and M2 macrophage polarization through inhibition of mTOR activation. ENVIRONMENTAL TOXICOLOGY 2024; 39:830-839. [PMID: 37792677 DOI: 10.1002/tox.23975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023]
Abstract
The tumor microenvironment (TME) plays a critical role in tumor progression, with macrophages and tumor cells interacting within the TME, influencing cancer development. Despite the known anticancer properties of calcitriol, its role in the TME remains uncertain. This study aimed to explore the effects of calcitriol on macrophages and cancer cells in the TME and its impact on gastric cancer cell proliferation and cisplatin resistance. In vitro TME models were established using conditioned medium from gastric cancer cells (CCM) and macrophages (MCM) treated with or without calcitriol. The results revealed that calcitriol treatment suppressed the expression of glycolysis-related genes and proteins (GLUT1, HKII, LDHA) in MCM-induced gastric cancer cells, leading to increased cancer cell apoptosis and reduced viability, along with decreased Cyclin D1 gene expression. Moreover, calcitriol treatment inhibited mTOR activation in MCM-induced gastric cancer cells. Additionally, calcitriol hindered CCM-induced M2 macrophage polarization by reducing CD206 expression and increasing TNFα gene expression in THP1-derived macrophages, attenuating cisplatin resistance. These findings suggest that calcitriol may impede gastric cancer progression by targeting glycolysis and M2 macrophage polarization through the regulation of mTOR activation in the TME.
Collapse
Affiliation(s)
- Li Jie
- Department of Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wang Hengyue
- Department of Anesthesiology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Han Ting
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
9
|
Enguita FJ, Leitão AL, Mattick JS. RNA Regulatory Networks 2.0. Int J Mol Sci 2023; 24:ijms24109001. [PMID: 37240347 DOI: 10.3390/ijms24109001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The central role of RNA molecules in cell biology has been an expanding subject of study since the proposal of the "RNA world" hypothesis 60 years ago [...].
Collapse
Affiliation(s)
- Francisco J Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Ana Lúcia Leitão
- Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - John S Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
10
|
Zemlin C, Altmayer L, Stuhlert C, Schleicher JT, Wörmann C, Lang M, Scherer LS, Thul IC, Spenner LS, Simon JA, Wind A, Kaiser E, Weber R, Goedicke-Fritz S, Wagenpfeil G, Zemlin M, Solomayer EF, Reichrath J, Müller C. Prevalence and Relevance of Vitamin D Deficiency in Newly Diagnosed Breast Cancer Patients: A Pilot Study. Nutrients 2023; 15:nu15061450. [PMID: 36986179 PMCID: PMC10056197 DOI: 10.3390/nu15061450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
(1) Background: Vitamin D plays an important role in many types of cancer. It was the aim of this study to analyze serum 25-hydroxyvitamin D (25(OH)D) levels in newly diagnosed breast cancer patients, and the association with prognostic and lifestyle factors. (2) Methods: 110 non-metastatic breast cancer patients were included in the prospective observational “BEGYN” study at Saarland University Medical Center between September 2019 and January 2021. At the initiation visit, serum 25(OH)D levels were measured. Clinicopathological data on prognosis, nutrition, and lifestyle were extracted from data files and obtained using a questionnaire. (3) Results: Median serum 25(OH)D in breast cancer patients was 24 ng/mL (range 5–65 ng/mL), with 64.8% of patients being vitamin D deficient. 25(OH)D was higher among patients that reported the use of vitamin D supplements (43 ng/mL versus 22 ng/mL; p < 0.001), and in summer compared to other seasons (p = 0.03). Patients with moderate vitamin D deficiency were less likely to have triple negative breast cancer (p = 0.047). (4) Conclusions: Routinely measured vitamin D deficiency is common in breast cancer patients and needs to be detected and treated. However, our results do not support the hypothesis that vitamin D deficiency may be a main prognostic factor for breast cancer.
Collapse
Affiliation(s)
- Cosima Zemlin
- Department of Gynecology, Obstetrics & Reproductive Medicine, Saarland University Medical Center, 66421 Homburg, Germany
| | - Laura Altmayer
- Department of Gynecology, Obstetrics & Reproductive Medicine, Saarland University Medical Center, 66421 Homburg, Germany
| | - Caroline Stuhlert
- Department of Gynecology, Obstetrics & Reproductive Medicine, Saarland University Medical Center, 66421 Homburg, Germany
| | - Julia Theresa Schleicher
- Department of Gynecology, Obstetrics & Reproductive Medicine, Saarland University Medical Center, 66421 Homburg, Germany
| | - Carolin Wörmann
- Department of Gynecology, Obstetrics & Reproductive Medicine, Saarland University Medical Center, 66421 Homburg, Germany
| | - Marina Lang
- Department of Gynecology, Obstetrics & Reproductive Medicine, Saarland University Medical Center, 66421 Homburg, Germany
| | - Laura-Sophie Scherer
- Department of Gynecology, Obstetrics & Reproductive Medicine, Saarland University Medical Center, 66421 Homburg, Germany
| | - Ida Clara Thul
- Department of Gynecology, Obstetrics & Reproductive Medicine, Saarland University Medical Center, 66421 Homburg, Germany
| | - Lisanne Sophie Spenner
- Department of Gynecology, Obstetrics & Reproductive Medicine, Saarland University Medical Center, 66421 Homburg, Germany
| | - Jana Alisa Simon
- Department of Gynecology, Obstetrics & Reproductive Medicine, Saarland University Medical Center, 66421 Homburg, Germany
| | - Alina Wind
- Department of Gynecology, Obstetrics & Reproductive Medicine, Saarland University Medical Center, 66421 Homburg, Germany
| | - Elisabeth Kaiser
- Department of General Pediatrics and Neonatology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Regine Weber
- Department of General Pediatrics and Neonatology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Sybelle Goedicke-Fritz
- Department of General Pediatrics and Neonatology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Gudrun Wagenpfeil
- Institute for Medical Biometry, Epidemiology and Medical Informatics (IMBEI), Saarland University, Campus Homburg, 66421 Homburg, Germany
| | - Michael Zemlin
- Department of General Pediatrics and Neonatology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Erich-Franz Solomayer
- Department of Gynecology, Obstetrics & Reproductive Medicine, Saarland University Medical Center, 66421 Homburg, Germany
| | - Jörg Reichrath
- Department of Dermatology, Venereology and Allergology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Carolin Müller
- Department of Gynecology, Obstetrics & Reproductive Medicine, Saarland University Medical Center, 66421 Homburg, Germany
- Correspondence: ; Tel.: +49-6841-1628-000
| |
Collapse
|
11
|
Zhao Z, Cai W, Xing J, Zhao C. Lower vitamin D levels and VDR variants are risk factors for breast cancer: an updated meta-analysis. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 42:17-37. [PMID: 35942872 DOI: 10.1080/15257770.2022.2107217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Inadequate vitamin D levels and vitamin D variants have been shown to be associated with breast cancer (BC), however the results are inconsistent. To reach a definitive conclusion the present meta-analysis was conducted. When compared to healthy controls, BC patients had reduced vitamin D levels (standard difference in means = -0.564, p = 0.003). The meta-analysis revealed that the FokI mutation was linked with an increased BC susceptibility (CC vs. TT: OR = 1.107, p = 0.001, CC vs. TC + TT: OR = 1.114, p = 0.020). There was no role of other VDR variants (BsmI, TaqI, and ApaI). FokI mutation and diminished vitamin D increase the likelihood of developing BC.
Collapse
Affiliation(s)
- Zhenyu Zhao
- Department of Oncology, The Third People's Hospital of Hubei Province, (Affiliated Hospital of Jianghan University, Wuhan City, Hubei Province, China
| | - Wenyu Cai
- Department of General Surgery, Huashan hospital affiliated to Fudan University, Shanghai city, China
| | - Jing Xing
- No. 95828 Unit of the Chinese people's Liberation Army, Xi'an, Shaanxi Province, China
| | - Chenhui Zhao
- Department of General Surgery, The Second People's Hospital of Jiulongpo District, Chongqing, China
| |
Collapse
|