1
|
Zhang Q, Choi K, Wang X, Xi L, Lu S. The Contribution of Human Antimicrobial Peptides to Fungi. Int J Mol Sci 2025; 26:2494. [PMID: 40141139 PMCID: PMC11941821 DOI: 10.3390/ijms26062494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
Various species of fungi can be detected in the environment and within the human body, many of which may become pathogenic under specific conditions, leading to various forms of fungal infections. Antimicrobial peptides (AMPs) are evolutionarily ancient components of the immune response that are quickly induced in response to infections with many pathogens in almost all tissues. There is a wide range of AMP classes in humans, many of which exhibit broad-spectrum antimicrobial function. This review provides a comprehensive overview of the mechanisms of action of AMPs, their distribution in the human body, and their antifungal activity against a range of both common and rare clinical fungal pathogens. It also discusses the current research status of promising novel antifungal strategies, highlighting the challenges that must be overcome in the development of these therapies. The hope is that antimicrobial peptides, as a class of antimicrobial agents, will soon progress through large-scale clinical trials and be implemented in clinical practice, offering new treatment options for patients suffering from infections.
Collapse
Affiliation(s)
| | | | | | | | - Sha Lu
- Department of Dermatology and Venereology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, #107 Yanjiang West Rd., Guangzhou 510120, China; (Q.Z.); (K.C.); (X.W.); (L.X.)
| |
Collapse
|
2
|
Shi X, Ma C, Fei J, Chen H, Liu Z, Ye N, Ma L, Zhao H, Zhao D. An Immunocompetent 56-Year-Old Woman With Multiple Enlarged Lymph Nodes and Recurrent Fevers. Chest 2025; 167:e41-e45. [PMID: 39939061 DOI: 10.1016/j.chest.2024.07.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/25/2024] [Accepted: 07/21/2024] [Indexed: 02/14/2025] Open
Abstract
CASE PRESENTATION A 56-year-old woman was admitted to our hospital, presenting with a history of recurrent fevers persisting for over 2 months. The febrile episode was self-limiting, accompanied by cough without significant expectoration, with the fever predominantly manifesting during the afternoon and evening hours. Furthermore, there were no concurrent symptoms indicative of chest tightness, wheezing, dyspnea, or hemoptysis. A CT scan in a local hospital demonstrated multifocal lymphadenopathy in the mediastinum and bilateral supraclavicular regions. The patient had neither a history of tobacco usage nor of alcohol consumption. Furthermore, there was no familial history of oncologic conditions. The patient's medical records revealed no evidence of hypertension, diabetes mellitus, coronary artery disease, infectious diseases, or immunologic disorders.
Collapse
Affiliation(s)
- Xiao Shi
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Changxiu Ma
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Jun Fei
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Hailong Chen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Zhou Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Naifang Ye
- Department of Clinical Laboratory, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Li Ma
- Department of Pathology, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Hong Zhao
- Department of Radiology, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Dahai Zhao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Anhui Medical University, Hefei, China.
| |
Collapse
|
3
|
Lax C, Mondo SJ, Osorio-Concepción M, Muszewska A, Corrochano-Luque M, Gutiérrez G, Riley R, Lipzen A, Guo J, Hundley H, Amirebrahimi M, Ng V, Lorenzo-Gutiérrez D, Binder U, Yang J, Song Y, Cánovas D, Navarro E, Freitag M, Gabaldón T, Grigoriev IV, Corrochano LM, Nicolás FE, Garre V. Symmetric and asymmetric DNA N6-adenine methylation regulates different biological responses in Mucorales. Nat Commun 2024; 15:6066. [PMID: 39025853 PMCID: PMC11258239 DOI: 10.1038/s41467-024-50365-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024] Open
Abstract
DNA N6-adenine methylation (6mA) has recently gained importance as an epigenetic modification in eukaryotes. Its function in lineages with high levels, such as early-diverging fungi (EDF), is of particular interest. Here, we investigated the biological significance and evolutionary implications of 6mA in EDF, which exhibit divergent evolutionary patterns in 6mA usage. The analysis of two Mucorales species displaying extreme 6mA usage reveals that species with high 6mA levels show symmetric methylation enriched in highly expressed genes. In contrast, species with low 6mA levels show mostly asymmetric 6mA. Interestingly, transcriptomic regulation throughout development and in response to environmental cues is associated with changes in the 6mA landscape. Furthermore, we identify an EDF-specific methyltransferase, likely originated from endosymbiotic bacteria, as responsible for asymmetric methylation, while an MTA-70 methylation complex performs symmetric methylation. The distinct phenotypes observed in the corresponding mutants reinforced the critical role of both types of 6mA in EDF.
Collapse
Affiliation(s)
- Carlos Lax
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Stephen J Mondo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80523, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Macario Osorio-Concepción
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | | | - Gabriel Gutiérrez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Robert Riley
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jie Guo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hope Hundley
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mojgan Amirebrahimi
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Vivian Ng
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Damaris Lorenzo-Gutiérrez
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Ulrike Binder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Junhuan Yang
- College of Food Science and Engineering, Lingnan Normal University, Zhanjiang, 524048, China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, China
| | - David Cánovas
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Eusebio Navarro
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Luis M Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain.
| | - Francisco E Nicolás
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain.
| | - Victoriano Garre
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
4
|
Lax C, Nicolás FE, Navarro E, Garre V. Molecular mechanisms that govern infection and antifungal resistance in Mucorales. Microbiol Mol Biol Rev 2024; 88:e0018822. [PMID: 38445820 PMCID: PMC10966947 DOI: 10.1128/mmbr.00188-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
SUMMARYThe World Health Organization has established a fungal priority pathogens list that includes species critical or highly important to human health. Among them is the order Mucorales, a fungal group comprising at least 39 species responsible for the life-threatening infection known as mucormycosis. Despite the continuous rise in cases and the poor prognosis due to innate resistance to most antifungal drugs used in the clinic, Mucorales has received limited attention, partly because of the difficulties in performing genetic manipulations. The COVID-19 pandemic has further escalated cases, with some patients experiencing the COVID-19-associated mucormycosis, highlighting the urgent need to increase knowledge about these fungi. This review addresses significant challenges in treating the disease, including delayed and poor diagnosis, the lack of accurate global incidence estimation, and the limited treatment options. Furthermore, it focuses on the most recent discoveries regarding the mechanisms and genes involved in the development of the disease, antifungal resistance, and the host defense response. Substantial advancements have been made in identifying key fungal genes responsible for invasion and tissue damage, host receptors exploited by the fungus to invade tissues, and mechanisms of antifungal resistance. This knowledge is expected to pave the way for the development of new antifungals to combat mucormycosis. In addition, we anticipate significant progress in characterizing Mucorales biology, particularly the mechanisms involved in pathogenesis and antifungal resistance, with the possibilities offered by CRISPR-Cas9 technology for genetic manipulation of the previously intractable Mucorales species.
Collapse
Affiliation(s)
- Carlos Lax
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Francisco E. Nicolás
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Eusebio Navarro
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Victoriano Garre
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
5
|
Scheler J, Binder U. Alternative in-vivo models of mucormycosis. Front Cell Infect Microbiol 2024; 14:1343834. [PMID: 38362495 PMCID: PMC10867140 DOI: 10.3389/fcimb.2024.1343834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Mucormycosis is still regarded a rare fungal infection, but the high incidences of COVID-associated cases in India and other countries have shown its potential threat to large patient cohorts. In addition, infections by these fast-growing fungi are often fatal and cause disfigurement, badly affecting patients' lives. In advancing our understanding of pathogenicity factors involved in this disease, to enhance the diagnostic toolset and to evaluate novel treatment regimes, animal models are indispensable. As ethical and practical considerations typically favor the use of alternative model systems, this review provides an overview of alternative animal models employed for mucormycosis and discusses advantages and limitations of the respective model.
Collapse
Affiliation(s)
| | - Ulrike Binder
- Department of Hygiene, Microbiology and Public Health, Division of Hygiene and Medical Microbiology, Medical University Innsbruck, Innsbruck, Tirol, Austria
| |
Collapse
|
6
|
Alejandre-Castañeda V, Patiño-Medina JA, Valle-Maldonado MI, García A, Ortiz-Alvarado R, Ruíz-Herrera LF, Castro-Cerritos KV, Ramírez-Emiliano J, Ramírez-Díaz MI, Garre V, Lee SC, Meza-Carmen V. Transcription Factors Tec1 and Tec2 Play Key Roles in the Hyphal Growth and Virulence of Mucor lusitanicus Through Increased Mitochondrial Oxidative Metabolism. J Microbiol 2023; 61:1043-1062. [PMID: 38114662 DOI: 10.1007/s12275-023-00096-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/01/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023]
Abstract
Mucormycosis is a lethal and difficult-to-treat fungal infection caused by fungi of the order Mucorales. Mucor lusitanicus, a member of Mucorales, is commonly used as a model to understand disease pathogenesis. However, transcriptional control of hyphal growth and virulence in Mucorales is poorly understood. This study aimed to investigate the role of Tec proteins, which belong to the TEA/ATTS transcription factor family, in the hyphal development and virulence of M. lusitanicus. Unlike in the genome of Ascomycetes and Basidiomycetes, which have a single Tec homologue, in the genome of Mucorales, two Tec homologues, Tec1 and Tec2, were found, except in that of Phycomyces blakesleeanus, with only one Tec homologue. tec1 and tec2 overexpression in M. lusitanicus increased mycelial growth, mitochondrial content and activity, expression of the rhizoferrin synthetase-encoding gene rfs, and virulence in nematodes and wax moth larvae but decreased cAMP levels and protein kinase A (PKA) activity. Furthermore, tec1- and tec2-overexpressing strains required adequate mitochondrial metabolism to promote the virulent phenotype. The heterotrimeric G beta subunit 1-encoding gene deletant strain (Δgpb1) increased cAMP-PKA activity, downregulation of both tec genes, decreased both virulence and hyphal development, but tec1 and tec2 overexpression restored these defects. Overexpression of allele-mutated variants of Tec1(S332A) and Tec2(S168A) in the putative phosphorylation sites for PKA increased both virulence and hyphal growth of Δgpb1. These findings suggest that Tec homologues promote mycelial development and virulence by enhancing mitochondrial metabolism and rhizoferrin accumulation, providing new information for the rational control of the virulent phenotype of M. lusitanicus.
Collapse
Affiliation(s)
- Viridiana Alejandre-Castañeda
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58030, Morelia, Mexico
| | - J Alberto Patiño-Medina
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58030, Morelia, Mexico
| | | | - Alexis García
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases (STCEID), The University of Texas at San Antonio, San Antonio, 78249, USA
| | - Rafael Ortiz-Alvarado
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58030, Morelia, Mexico
| | - León F Ruíz-Herrera
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58030, Morelia, Mexico
| | | | | | - Martha I Ramírez-Díaz
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58030, Morelia, Mexico
| | - Victoriano Garre
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| | - Soo Chan Lee
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases (STCEID), The University of Texas at San Antonio, San Antonio, 78249, USA
| | - Víctor Meza-Carmen
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58030, Morelia, Mexico.
| |
Collapse
|
7
|
Patiño-Medina JA, Alejandre-Castañeda V, Valle-Maldonado MI, Martínez-Pacheco MM, Ruiz-Herrera LF, Ramírez-Emiliano J, Ramírez-Marroquín OA, Castro-Cerritos KV, Campos-García J, Ramírez-Díaz MI, Garre V, Binder U, Meza-Carmen V. Blood Serum Stimulates the Virulence Potential of Mucorales through Enhancement in Mitochondrial Oxidative Metabolism and Rhizoferrin Production. J Fungi (Basel) 2023; 9:1127. [PMID: 38132728 PMCID: PMC10744254 DOI: 10.3390/jof9121127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
This study analyzed the role of blood serum in enhancing the mitochondrial metabolism and virulence of Mucorales through rhizoferrin secretion. We observed that the spores of clinically relevant Mucorales produced in the presence of serum exhibited higher virulence in a heterologous infection model of Galleria mellonella. Cell-free supernatants of the culture broth obtained from spores produced in serum showed increased toxicity against Caenorhabditis elegans, which was linked with the enhanced secretion of rhizoferrin. Spores from Mucoralean species produced or germinated in serum showed increased respiration rates and reactive oxygen species levels. The addition of non-lethal concentrations of potassium cyanide and N-acetylcysteine during the aerobic or anaerobic growth of Mucorales decreased the toxicity of the cell-free supernatants of the culture broth, suggesting that mitochondrial metabolism is important for serum-induced virulence. In support of this hypothesis, a mutant strain of Mucor lusitanicus that lacks fermentation and solely relies on oxidative metabolism exhibited virulence levels comparable to those of the wild-type strain under serum-induced conditions. Contrary to the lower virulence observed, even in the serum, the ADP-ribosylation factor-like 2 deletion strain exhibited decreased mitochondrial activity. Moreover, spores produced in the serum of M. lusitanicus and Rhizopus arrhizus that grew in the presence of a mitophagy inducer showed low virulence. These results suggest that serum-induced mitochondrial activity increases rhizoferrin levels, making Mucorales more virulent.
Collapse
Affiliation(s)
- José Alberto Patiño-Medina
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; (J.A.P.-M.); (V.A.-C.); (M.M.M.-P.); (L.F.R.-H.); (J.C.-G.); (M.I.R.-D.)
| | - Viridiana Alejandre-Castañeda
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; (J.A.P.-M.); (V.A.-C.); (M.M.M.-P.); (L.F.R.-H.); (J.C.-G.); (M.I.R.-D.)
| | | | - Mauro Manuel Martínez-Pacheco
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; (J.A.P.-M.); (V.A.-C.); (M.M.M.-P.); (L.F.R.-H.); (J.C.-G.); (M.I.R.-D.)
| | - León Francisco Ruiz-Herrera
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; (J.A.P.-M.); (V.A.-C.); (M.M.M.-P.); (L.F.R.-H.); (J.C.-G.); (M.I.R.-D.)
| | | | | | | | - Jesús Campos-García
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; (J.A.P.-M.); (V.A.-C.); (M.M.M.-P.); (L.F.R.-H.); (J.C.-G.); (M.I.R.-D.)
| | - Martha Isela Ramírez-Díaz
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; (J.A.P.-M.); (V.A.-C.); (M.M.M.-P.); (L.F.R.-H.); (J.C.-G.); (M.I.R.-D.)
| | - Victoriano Garre
- Departamento de Genética y Microbiología, Universidad de Murcia, 30100 Murcia, Spain;
| | - Ulrike Binder
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, 6020 Innsbruck, Austria;
| | - Víctor Meza-Carmen
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; (J.A.P.-M.); (V.A.-C.); (M.M.M.-P.); (L.F.R.-H.); (J.C.-G.); (M.I.R.-D.)
| |
Collapse
|
8
|
Marcial-Quino J, Fierro F, Fernández FJ, Montiel-Gonzalez AM, Sierra-Palacios E, Tomasini A. Silencing of Amylomyces rouxii aspartic II protease by siRNA to increase tyrosinase activity. Fungal Biol 2023; 127:1415-1425. [PMID: 37993253 DOI: 10.1016/j.funbio.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/20/2023] [Accepted: 10/20/2023] [Indexed: 11/24/2023]
Abstract
Amylomyces rouxii is a zygomycete that produces extracellular protease and tyrosinase. The tyrosinase activity is negatively regulated by the proteases and, which attempts to purify the tyrosinase (tyr) enzyme that has been hampered by the presence of a protease that co-purified with it. In this work we identified genes encoding aspartic protease II (aspII) and VI of A. rouxii. Using an RNAi strategy based on the generation of a siRNA by transcription from two opposite-orientated promoters, the expression of these two proteases was silenced, showing that this molecular tool is suitable for gene silencing in Amylomyces. The transformant strains showed a significant attenuation of the transcripts (determined by RT-qPCR), with respective inhibition of the protease activity. In the case of aspII, inhibition was in the range of 43-90 % in different transformants, which correlated well with up to a five-fold increase in tyr activity with respect to the wild type and control strains. In contrast, silencing of aspVI caused a 43-65 % decrease in protease activity but had no significant effect on the tyr activity. The results show that aspII has a negative effect on tyr activity, and that the silencing of this protease is important to obtain strains with high levels of tyr activity.
Collapse
Affiliation(s)
- Jaime Marcial-Quino
- Laboratorio de Biología Molecular, Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Tlaxcala, 90120, Mexico
| | - Francisco Fierro
- Depto. de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Apdo, Postal 55-535, C.P. 09340, Mexico City, Mexico
| | - Francisco José Fernández
- Depto. de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Apdo, Postal 55-535, C.P. 09340, Mexico City, Mexico
| | - Alba Mónica Montiel-Gonzalez
- Laboratorio de Biología Molecular, Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Tlaxcala, 90120, Mexico
| | - Edgar Sierra-Palacios
- Colegio de Ciencias y Humanidades, Plantel Casa Libertad, Universidad Autónoma de la Ciudad de México, Ciudad de Mexico, 09620, Mexico
| | - Araceli Tomasini
- Depto. de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Apdo, Postal 55-535, C.P. 09340, Mexico City, Mexico.
| |
Collapse
|
9
|
Mucorales and Mucormycosis: Recent Insights and Future Prospects. J Fungi (Basel) 2023; 9:jof9030335. [PMID: 36983503 PMCID: PMC10058716 DOI: 10.3390/jof9030335] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
The classification of Mucorales encompasses a collection of basal fungi that have traditionally demonstrated an aversion to modern genetic manipulation techniques. This aversion led to a scarcity of knowledge regarding their biology compared to other fungal groups. However, the emergence of mucormycosis, a fungal disease caused by Mucorales, has attracted the attention of the clinical field, mainly because available therapies are ineffective for decreasing the fatal outcome associated with the disease. This revitalized curiosity about Mucorales and mucormycosis, also encouraged by the recent COVID-19 pandemic, has spurred a significant and productive effort to uncover their mysteries in recent years. Here, we elaborate on the most remarkable breakthroughs related to the recently discovered genetic advances in Mucorales and mucormycosis. The utilization of a few genetic study models has enabled the identification of virulence factors in Mucorales that were previously described in other pathogens. More notably, recent investigations have identified novel genes and mechanisms controlling the pathogenic potential of Mucorales and their interactions with the host, providing fresh avenues to devise new strategies against mucormycosis. Finally, new study models are allowing virulence studies that were previously hampered in Mucorales, predicting a prolific future for the field.
Collapse
|