1
|
Peng Z, Rehman A, Jiang X, Tian C, Wang Z, Li H, Wang X, Ahmad A, Azhar MT, Du X, He S. Comparative transcriptome analysis and functional verification revealed that GhSAP6 negatively regulates salt tolerance in upland cotton. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109406. [PMID: 39700916 DOI: 10.1016/j.plaphy.2024.109406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/21/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Owing to the scarcity of cultivable land in China, the agricultural sector is primarily focused on grain and oil crops. Simultaneously, the cultivation of cotton has gradually shifted towards regions characterized by elevated soil salinity levels. Additionally, the mechanism behind cotton's ability to tolerate salt remains elusive. In this study, we identified the Z9807 genotype as highly tolerant to salt stress, exhibiting superior leaf wilting resistance, antioxidant activity, catalase activity, K+/Na+ ratio, and growth compared to the salt-sensitive ZJ0102. Comparative transcriptome analysis revealed marked differences in salt stress responses between Z9807 and ZJ0102. This study identified a considerable number of differentially expressed genes associated with salt tolerance across multiple time points. By integration of QTL and GWAS mapping data, we successfully identified 621 candidate genes associated with salt tolerance. Weighted gene correlation network analysis exhibited three co-expression modules related to salt-tolerant Z9807 samples, ultimately identifying 15 core salt-tolerant candidate genes. We also conducted in-depth research on the salt tolerance of the stress-associated protein (SAP) GhSAP6 (GhSAP6_At and GhSAP6_Dt homologs). Results revealed that these candidate genes may inhibit salt tolerance through Virus-Induced Gene Silencing (VIGS) and transgenic overexpression assays conducted in Arabidopsis thaliana. Furthermore, we used yeast two-hybrid and luciferase assay experiments to confirm the ubiquitin degradation pathway between selected interacting proteins and verified the interaction with RAD23C. This study will provide new insights into the mechanisms related to salt tolerance in upland cotton.
Collapse
Affiliation(s)
- Zhen Peng
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Henan International Joint Laboratory of Cotton Biology, Anyang, 455000, China
| | - Abdul Rehman
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xuran Jiang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunyan Tian
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenzhen Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Hongge Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Henan International Joint Laboratory of Cotton Biology, Anyang, 455000, China
| | - Xiaoyang Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Adeel Ahmad
- Central Cotton Research Institute, Pakistan Central Cotton Committee, Multan, 60000, Pakistan
| | - Muhammad Tehseen Azhar
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Xiongming Du
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Henan International Joint Laboratory of Cotton Biology, Anyang, 455000, China.
| | - Shoupu He
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Henan International Joint Laboratory of Cotton Biology, Anyang, 455000, China.
| |
Collapse
|
2
|
Wang Z, Qu L, Fan Z, Hou L, Hu J, Wang L. Dynamic Metabolic Responses of Resistant and Susceptible Poplar Clones Induced by Hyphantria cunea Feeding. BIOLOGY 2024; 13:723. [PMID: 39336150 PMCID: PMC11428749 DOI: 10.3390/biology13090723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
Poplar trees are significant for both economic and ecological purposes, and the fall webworm (Hyphantria cunea Drury) poses a major threat to their plantation in China. The preliminary resistance assessment in the previous research indicated that there were differences in resistance to the insect among these varieties, with '2KEN8' being more resistant and 'Nankang' being more susceptible. The present study analyzed the dynamic changes in the defensive enzymes and metabolic profiles of '2KEN8' and 'Nankang' at 24 hours post-infestation (hpi), 48 hpi, and 96 hpi. The results demonstrated that at the same time points, compared to susceptible 'Nankang', the leaf consumption by H. cunea in '2KEN8' was smaller, and the larval weight gain was slower, exhibiting clear resistance to the insect. Biochemical analysis revealed that the increased activity of the defensive enzymes in '2KEN8' triggered by the feeding of H. cunea was significantly higher than that of 'Nankang'. Metabolomics analysis indicated that '2KEN8' initiated an earlier and more intense reprogramming of the metabolic profile post-infestation. In the early stages of infestation, the differential metabolites induced in '2KEN8' primarily included phenolic compounds, flavonoids, and unsaturated fatty acids, which are related to the biosynthesis pathways of phenylpropanoids, flavonoids, unsaturated fatty acids, and jasmonates. The present study is helpful for identifying the metabolic biomarkers for inductive resistance to H. cunea and lays a foundation for the further elucidation of the chemical resistance mechanism of poplar trees against this insect.
Collapse
Affiliation(s)
- Zheshu Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Liangjian Qu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Zhibin Fan
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Luxuan Hou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Lijuan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
3
|
Li J, Zhao R, Liu J, Yao J, Ma S, Yin K, Zhang Y, Liu Z, Yan C, Zhao N, Zhou X, Chen S. Populus euphratica GRP2 Interacts with Target mRNAs to Negatively Regulate Salt Tolerance by Interfering with Photosynthesis, Na +, and ROS Homeostasis. Int J Mol Sci 2024; 25:2046. [PMID: 38396725 PMCID: PMC10888501 DOI: 10.3390/ijms25042046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/17/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The transcription of glycine-rich RNA-binding protein 2 (PeGRP2) transiently increased in the roots and shoots of Populus euphratica (a salt-resistant poplar) upon initial salt exposure and tended to decrease after long-term NaCl stress (100 mM, 12 days). PeGRP2 overexpression in the hybrid Populus tremula × P. alba '717-1B4' (P. × canescens) increased its salt sensitivity, which was reflected in the plant's growth and photosynthesis. PeGRP2 contains a conserved RNA recognition motif domain at the N-terminus, and RNA affinity purification (RAP) sequencing was developed to enrich the target mRNAs that physically interacted with PeGRP2 in P. × canescens. RAP sequencing combined with RT-qPCR revealed that NaCl decreased the transcripts of PeGRP2-interacting mRNAs encoding photosynthetic proteins, antioxidative enzymes, ATPases, and Na+/H+ antiporters in this transgenic poplar. Specifically, PeGRP2 negatively affected the stability of the target mRNAs encoding the photosynthetic proteins PETC and RBCMT; antioxidant enzymes SOD[Mn], CDSP32, and CYB1-2; ATPases AHA11, ACA8, and ACA9; and the Na+/H+ antiporter NHA1. This resulted in (i) a greater reduction in Fv/Fm, YII, ETR, and Pn; (ii) less pronounced activation of antioxidative enzymes; and (iii) a reduced ability to maintain Na+ homeostasis in the transgenic poplars during long-term salt stress, leading to their lowered ability to tolerate salinity stress.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (J.L.); (R.Z.); (J.L.); (S.M.); (K.Y.); (Y.Z.); (Z.L.); (C.Y.); (N.Z.); (X.Z.)
| | - Rui Zhao
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (J.L.); (R.Z.); (J.L.); (S.M.); (K.Y.); (Y.Z.); (Z.L.); (C.Y.); (N.Z.); (X.Z.)
| | - Jian Liu
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (J.L.); (R.Z.); (J.L.); (S.M.); (K.Y.); (Y.Z.); (Z.L.); (C.Y.); (N.Z.); (X.Z.)
| | - Jun Yao
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China;
| | - Siyuan Ma
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (J.L.); (R.Z.); (J.L.); (S.M.); (K.Y.); (Y.Z.); (Z.L.); (C.Y.); (N.Z.); (X.Z.)
| | - Kexin Yin
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (J.L.); (R.Z.); (J.L.); (S.M.); (K.Y.); (Y.Z.); (Z.L.); (C.Y.); (N.Z.); (X.Z.)
| | - Ying Zhang
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (J.L.); (R.Z.); (J.L.); (S.M.); (K.Y.); (Y.Z.); (Z.L.); (C.Y.); (N.Z.); (X.Z.)
| | - Zhe Liu
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (J.L.); (R.Z.); (J.L.); (S.M.); (K.Y.); (Y.Z.); (Z.L.); (C.Y.); (N.Z.); (X.Z.)
| | - Caixia Yan
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (J.L.); (R.Z.); (J.L.); (S.M.); (K.Y.); (Y.Z.); (Z.L.); (C.Y.); (N.Z.); (X.Z.)
| | - Nan Zhao
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (J.L.); (R.Z.); (J.L.); (S.M.); (K.Y.); (Y.Z.); (Z.L.); (C.Y.); (N.Z.); (X.Z.)
| | - Xiaoyang Zhou
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (J.L.); (R.Z.); (J.L.); (S.M.); (K.Y.); (Y.Z.); (Z.L.); (C.Y.); (N.Z.); (X.Z.)
| | - Shaoliang Chen
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (J.L.); (R.Z.); (J.L.); (S.M.); (K.Y.); (Y.Z.); (Z.L.); (C.Y.); (N.Z.); (X.Z.)
| |
Collapse
|
4
|
Guan J, Yang Y, Shan Q, Zhang H, Zhou A, Gong S, Chai T, Qiao K. Plant cadmium resistance 10 enhances tolerance to toxic heavy metals in poplar. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108043. [PMID: 37734271 DOI: 10.1016/j.plaphy.2023.108043] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
Toxic heavy metals originating from human activities have caused irreversible harm to the environment. Toxic heavy metal ions absorbed by crop plants can seriously threaten human health. Therefore, decreasing heavy metal contents in crop plants is an urgent need. The plant cadmium resistance protein (PCR) is a heavy metal ion transporter. In this study, PePCR10 was cloned from Populus euphratica. Bioinformatics analyses revealed its transmembrane structure and gene sequence motifs. The transcript profile of PePCR10 was analyzed by RT-qPCR, and its transcript levels increased under toxic heavy metal (cadmium, lead, aluminum) treatments. Subcellular localization analyses in tobacco cells revealed that PePCR10 localizes at the plasma membrane. Compared with wild type (WT), PePCR10-overexpressing lines showed significantly higher values for plant height, root length, fresh weight, and dry weight under heavy metal stress. Electrolyte leakage, nitroblue tetrazolium staining, and chlorophyll fluorescence analyses indicated that Cd/Al tolerance in PePCR10-overexpressing lines was stronger than that in WT. The Cd/Al contents were lower in the PePCR10-overexpressing lines than in WT under Cd/Al stress. Our results show that PePCR10 can reduce the heavy metal content in poplar and enhance its Cd/Al tolerance. Hence, PePCR10 is a candidate genetic resource for effectively reducing heavy metal accumulation in crops.
Collapse
Affiliation(s)
- Jing Guan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yahan Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qinghua Shan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Haizhen Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Aimin Zhou
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shufang Gong
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tuanyao Chai
- College of Life Science, University of the Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Kun Qiao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
5
|
Ge X, Du J, Zhang L, Qu G, Hu J. PeCLH2 Gene Positively Regulate Salt Tolerance in Transgenic Populus alba × Populus glandulosa. Genes (Basel) 2023; 14:genes14030538. [PMID: 36980811 PMCID: PMC10048402 DOI: 10.3390/genes14030538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Salt is an important environmental stress factor, which seriously affects the growth, development and distribution of plants. Chlorophyllase plays an important role in stress response. Nevertheless, little is known about the physiological and molecular mechanism of chlorophyll (Chlase, CLH) genes in plants. We cloned PeCLH2 from Populus euphratica and found that PeCLH2 was differentially expressed in different tissues, especially in the leaves of P. euphratica. To further study the role of PeCLH2 in salt tolerance, PeCLH2 overexpression and RNA interference transgenic lines were established in Populus alba × Populus glandulosa and used for salt stress treatment and physiologic indexes studies. Overexpressing lines significantly improved tolerance to salt treatment and reduced reactive oxygen species production. RNA interference lines showed the opposite. Transcriptome analysis was performed on leaves of control and transgenic lines under normal growth conditions and salt stress to predict genes regulated during salt stress. This provides a basis for elucidating the molecular regulation mechanism of PeCLH2 in response to salt stress and improving the tolerance of poplar under salt stress.
Collapse
Affiliation(s)
- Xiaolan Ge
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Hexing Road, Harbin 150040, China
| | - Jiujun Du
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
| | - Lei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Hexing Road, Harbin 150040, China
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: ; Tel.: +86-10-62888862
| |
Collapse
|
6
|
Jia C, Guo B, Wang B, Li X, Yang T, Li N, Wang J, Yu Q. Integrated metabolomic and transcriptomic analysis reveals the role of phenylpropanoid biosynthesis pathway in tomato roots during salt stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1023696. [PMID: 36570882 PMCID: PMC9773889 DOI: 10.3389/fpls.2022.1023696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
As global soil salinization continues to intensify, there is a need to enhance salt tolerance in crops. Understanding the molecular mechanisms of tomato (Solanum lycopersicum) roots' adaptation to salt stress is of great significance to enhance its salt tolerance and promote its planting in saline soils. A combined analysis of the metabolome and transcriptome of S. lycopersicum roots under different periods of salt stress according to changes in phenotypic and root physiological indices revealed that different accumulated metabolites and differentially expressed genes (DEGs) associated with phenylpropanoid biosynthesis were significantly altered. The levels of phenylpropanoids increased and showed a dynamic trend with the duration of salt stress. Ferulic acid (FA) and spermidine (Spd) levels were substantially up-regulated at the initial and mid-late stages of salt stress, respectively, and were significantly correlated with the expression of the corresponding synthetic genes. The results of canonical correlation analysis screening of highly correlated DEGs and construction of regulatory relationship networks with transcription factors (TFs) for FA and Spd, respectively, showed that the obtained target genes were regulated by most of the TFs, and TFs such as MYB, Dof, BPC, GRAS, and AP2/ERF might contribute to the regulation of FA and Spd content levels. Ultimately, FA and Spd attenuated the harm caused by salt stress in S. lycopersicum, and they may be key regulators of its salt tolerance. These findings uncover the dynamics and possible molecular mechanisms of phenylpropanoids during different salt stress periods, providing a basis for future studies and crop improvement.
Collapse
Affiliation(s)
- Chunping Jia
- College of Life Science and Technology, Xinjiang University, Urumqi, China
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Bin Guo
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi, China
| | - Baike Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Xin Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi, China
| | - Tao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Ning Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Qinghui Yu
- College of Life Science and Technology, Xinjiang University, Urumqi, China
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| |
Collapse
|
7
|
Li J, Li W, Xu L, Wang M, Zhou W, Li S, Tan W, Wang Q, Xing W, Liu D. Acclimation of sugar beet in morphological, physiological and BvAMT1.2 expression under low and high nitrogen supply. PLoS One 2022; 17:e0278327. [PMID: 36445927 PMCID: PMC9707788 DOI: 10.1371/journal.pone.0278327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Understanding the response and tolerance mechanisms of nitrogen (N) stress is essential for the taproot plant of sugar beet. Hence, in this study, low (0.5 and 3 mmol/L; N0.5 and N3), moderate (5 mmol/L; N5; control) and high (10 and 12 mmol/L; N10 and N12) N were imposed to sugar beet to comparatively investigate the growth and physiological changes, and expression pattern of the gene involving ammonia transporting at different seedling stages. The results showed that, different from N5 which could induce maximum biomass of beet seedlings, low N was more likely to inhibit the growth of beet seedlings than high N treatments. Morphological differences and adverse factors increased significantly with extension of stress time, but sugar beet seedlings displayed a variety of physical responses to different N concentrations to adapt to N abnormal. At 14 d, the chlorophyll content, leaf and root surface area, total dry weight and nitrogen content of seedlings treated with N0.5 decreased 15.83%, 53.65%, 73.94%, 78.08% and 24.88% respectively, compared with N12; however, the root shoot ratio increased significantly as well as superoxide dismutase (SOD), peroxidase (POD), glutamine synthetase (GS) activity and malondialdehyde (MDA) and proline content, especially in root. The expression of BvAMT1.2 was also regulated in an N concentration-dependent manner, and was mainly involved in the tolerance of beet leaves to N stress, which significantly positively correlated to GS activity on the basis of its high affinity to N. It can be deduced that the stored nutrients under low N could only maintain relatively stable root growth, and faced difficulty in being transported to the shoots. Sugar beet was relatively resilient to N0.5 stress according to the mean affiliation function analysis. These results provide a theoretical basis for the extensive cultivation of sugar beet in N-stressed soil.
Collapse
Affiliation(s)
- Jiajia Li
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, P. R. China
- Key Laboratory of Sugar Beet Genetics and Breeding, Heilongjiang Province Common College/College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, P. R. China
| | - Wangsheng Li
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, P. R. China
- Key Laboratory of Sugar Beet Genetics and Breeding, Heilongjiang Province Common College/College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, P. R. China
| | - Lingqing Xu
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, P. R. China
- Key Laboratory of Sugar Beet Genetics and Breeding, Heilongjiang Province Common College/College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, P. R. China
| | - Man Wang
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, P. R. China
- Key Laboratory of Sugar Beet Genetics and Breeding, Heilongjiang Province Common College/College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, P. R. China
| | - Wanting Zhou
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, P. R. China
- Key Laboratory of Sugar Beet Genetics and Breeding, Heilongjiang Province Common College/College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, P. R. China
| | - Siqi Li
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, P. R. China
- Key Laboratory of Sugar Beet Genetics and Breeding, Heilongjiang Province Common College/College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, P. R. China
| | - Wenbo Tan
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, P. R. China
- Key Laboratory of Sugar Beet Genetics and Breeding, Heilongjiang Province Common College/College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, P. R. China
| | - Qiuhong Wang
- Key Laboratory of Sugar Beet Genetics and Breeding, Heilongjiang Province Common College/College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, P. R. China
| | - Wang Xing
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, P. R. China
- Key Laboratory of Sugar Beet Genetics and Breeding, Heilongjiang Province Common College/College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, P. R. China
- * E-mail: (WX); (DL)
| | - Dali Liu
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, P. R. China
- Key Laboratory of Sugar Beet Genetics and Breeding, Heilongjiang Province Common College/College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, P. R. China
- * E-mail: (WX); (DL)
| |
Collapse
|