1
|
Hung JH, Jain T, Khatri A, Nguyen BT, Nguyen CDT, Yavari N, Mobasserian A, Karaca I, Saeed Mohammadi S, Gupta AS, Or CMC, Akhavanrezayat A, Yasar C, Saengsirinavin AO, Than NTT, Anover FA, Elaraby O, El Feky D, Yoo WS, Zhang X, Thng ZX, Do DV, Nguyen QD. Inherited retinal disease-associated uveitis. Surv Ophthalmol 2025:S0039-6257(25)00057-8. [PMID: 40157547 DOI: 10.1016/j.survophthal.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Inherited retinal diseases (IRDs) are genetic disorders characterized by progressive photoreceptor function loss, often leading to significant visual impairment. Uveitis has been increasingly recognized in the clinical course of some IRDs. Despite advances in understanding the genetic causes and pathophysiology of IRDs, gaps remain in understanding the roles of inflammation and autoimmunity in IRD and IRD-associated uveitis. This review discusses IRD-associated uveitis, including anterior, intermediate, posterior, and panuveitis, as well as complications such as cystoid macular edema and retinal vasculitis. In patients with IRD-associated uveitis, mutations affecting protein function in cilia or photoreceptor outer segments suggest a universal autoimmune mechanism triggered by the immunogenicity of shedding photoreceptor discs. Notably, in patients where uveitis is the initial sign, CRB1 mutations are often implicated, likely due to the compromised blood-retina barrier function or alterations in the external limiting membrane. Other mechanisms leading to uveitis preceding IRD diagnosis include ALPK1 mutations, which activate the proinflammatory NF-κB pathway, CAPN5 mutations, which lead to dysfunction of the innate and adaptive immune systems, and VCAN1 mutations, which elicit immunogenicity due to irregularities in vitreous modeling. Understanding these mechanisms could enhance the development of innovative treatments that target personalized inflammation pathways in IRDs.
Collapse
Affiliation(s)
- Jia-Horung Hung
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA; Department of Genomic Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tanya Jain
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA; Dr. Shroff's Charity Eye Hospital, New Delhi, India
| | - Anadi Khatri
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA; Birat Eye Hospital, Biratnagar, Nepal; Gautam Buddha Eye care centre, Lumbini, Nepal
| | - Ba Trung Nguyen
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA; Department of Ophthalmology, Viet Nam National Children's Hospital, Ha Noi, Viet Nam
| | | | - Negin Yavari
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Azadeh Mobasserian
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Irmak Karaca
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA; John A. Moran Eye Center, University of Utah, Salt Lake City, UT, US
| | - S Saeed Mohammadi
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Ankur Sudhir Gupta
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Chi Mong Christopher Or
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Amir Akhavanrezayat
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Cigdem Yasar
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Aim-On Saengsirinavin
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA; Police General Hospital, Bangkok, Thailand
| | - Ngoc Trong Tuong Than
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Frances Andrea Anover
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA; Batangas Medical Center, Batangas, Philippines
| | - Osama Elaraby
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Dalia El Feky
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Woong-Sun Yoo
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA; Department of Ophthalmology, Gyeongsang National University College of Medicine, and Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Xiaoyan Zhang
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Zheng Xian Thng
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA; National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore
| | - Diana V Do
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Quan Dong Nguyen
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
2
|
Zhang X, Zheng Y, Wang Z, Zhang G, Yang L, Gan J, Jiang X. Calpain: The regulatory point of cardiovascular and cerebrovascular diseases. Biomed Pharmacother 2024; 179:117272. [PMID: 39153432 DOI: 10.1016/j.biopha.2024.117272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024] Open
Abstract
Calpain, a key member of the Calpain cysteine protease superfamily, performs limited protein hydrolysis in a calcium-dependent manner. Its activity is tightly regulated due to the potential for non-specific cleavage of various intracellular proteins upon aberrant activation. A thorough review of the literature from 2010 to 2023 reveals 121 references discussing cardiovascular and cerebrovascular diseases. Dysregulation of the Calpain system is associated with various pathological phenomena, including lipid metabolism disorders, inflammation, apoptosis, and excitotoxicity. Although recent studies have revealed the significant role of Calpain in cardiovascular and cerebrovascular diseases, the precise mechanisms remain incompletely understood. Exploring the potential of Calpain inhibition as a therapeutic approach for the treatment of cardiovascular and cerebrovascular diseases may emerge as a compelling area of interest for future calpain research.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yujia Zheng
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Ziyu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Guangming Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Lin Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Jiali Gan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xijuan Jiang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
3
|
ER Stress Response and Induction of Apoptosis in Malignant Pleural Mesothelioma: The Achilles Heel Targeted by the Anticancer Ruthenium Drug BOLD-100. Cancers (Basel) 2022; 14:cancers14174126. [PMID: 36077664 PMCID: PMC9454852 DOI: 10.3390/cancers14174126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/02/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Malignant mesothelioma is a rare cancer arising from the serosal surfaces of the body, mainly from the pleural layer. This cancer, strongly linked to asbestos exposure, shows a very inauspicious prognosis. In fact, there is no efficient therapeutic treatment for malignant pleural mesothelioma (MPM). Thus, there is an urgent need to develop novel therapeutic approaches to treat this form of cancer. Our previous study showed the importance of GRP78 in MPM survival. BOLD-100 is a specific modulator of GRP78 and we have observed that it shows cytotoxicity against MPM cells. In particular, we describe that BOLD-100 increases oxidative stress and deregulates the calcium homeostasis leading to cell stress and, ultimately, to cell death. Our in vitro data strongly suggest that BOLD-100 inhibits the growth of MPM cell lines, proposing the application as a single agent, or in combination with other standard-of-care drugs, to treat MPM. Abstract Malignant mesothelioma is a rare cancer arising from the serosal surfaces of the body, mainly from the pleural layer. This cancer is strongly related to asbestos exposure and shows a very inauspicious prognosis, because there are scarce therapeutic options for this rare disease. Thus, there is an urgent need to develop novel therapeutic approaches to treat this form of cancer. To explore the biology of malignant pleural mesothelioma (MPM), we previously observed that MPM cell lines show high expression of the GRP78 protein, which is a chaperone protein and the master regulator of the unfolded protein response (UPR) that resides in the endoplasmic reticulum (ER). Based on our previous studies showing the importance of GRP78 in MPM, we observed that BOLD-100, a specific modulator of GRP78 and the UPR, shows cytotoxicity against MPM cells. Our studies demonstrated that BOLD-100 increases ROS production and Ca2+ release from the ER, leading to ER stress activation and, ultimately, to cell death. Our in vitro data strongly suggest that BOLD-100 inhibits the growth of MPM cell lines, proposing the application as a single agent, or in combination with other standard-of-care drugs, to treat MPM.
Collapse
|