1
|
Khan HR, Sultan R, Javeed M, Yasmeen H, Arooj I, Janiad S. Functional foods and immune system: A sustainable inhibitory approach against SARS-COV-2. Antivir Ther 2025; 30:13596535251322297. [PMID: 40138520 DOI: 10.1177/13596535251322297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Background: COVID-19 has become the center of attention since its outbreak in December 2019. Despite the discovery of its preventive vaccine, role of healthy immune system is undebatable. Functional foods are continuously hunted as a promising option for a safe natural therapeutic treatment.Purpose: This review demonstrates how functional foods can boost host immune system, promote antiviral operation, and synthesize biologically effective molecules against SARS-COV-2.Research Methodology: For current review, online search was conducted for nature-based functional immune boosters against SARS-COV-2.Conclusion: Functional foods, alongside a healthy lifestyle, fortifies the human immune system and could all help to dramatically lower the cost burden of COVID-19, the suffering of the patients, and the mortality rates worldwide.
Collapse
Affiliation(s)
- Hubza Ruatt Khan
- Department of Microbiology and Molecular Genetics, The Women University Multan, Multan, Pakistan
| | - Rabia Sultan
- Department of Microbiology and Molecular Genetics, The Women University Multan, Multan, Pakistan
| | - Mehvish Javeed
- Department of Microbiology and Molecular Genetics, The Women University Multan, Multan, Pakistan
| | - Humaira Yasmeen
- Department of Microbiology and Molecular Genetics, The Women University Multan, Multan, Pakistan
| | - Iqra Arooj
- Department of Microbiology and Molecular Genetics, The Women University Multan, Multan, Pakistan
| | - Sara Janiad
- Department of Microbiology and Molecular Genetics, The Women University Multan, Multan, Pakistan
| |
Collapse
|
2
|
Ailioaie LM, Ailioaie C, Litscher G. Gut Microbiota and Mitochondria: Health and Pathophysiological Aspects of Long COVID. Int J Mol Sci 2023; 24:17198. [PMID: 38139027 PMCID: PMC10743487 DOI: 10.3390/ijms242417198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
The current understanding of long COVID (LC) is still limited. This review highlights key findings regarding the role of gut microbiota, mitochondria, and the main pathophysiological aspects of LC revealed by clinical studies, related to the complex interplay between infection, intestinal dysbiosis, dysfunctional mitochondria, and systemic inflammation generated in a vicious circle, reflecting the molecular and cellular processes from the "leaky gut" to the "leaky electron transport chain (ETC)" into a quantum leap. The heterogeneity of LC has hindered progress in deciphering all the pathophysiological mechanisms, and therefore, the approach must be multidisciplinary, with a special focus not only on symptomatic management but also on addressing the underlying health problems of the patients. It is imperative to further assess and validate the effects of COVID-19 and LC on the gut microbiome and their relationship to infections with other viral agents or pathogens. Further studies are needed to better understand LC and expand the interdisciplinary points of view that are required to accurately diagnose and effectively treat this heterogeneous condition. Given the ability of SARS-CoV-2 to induce autoimmunity in susceptible patients, they should be monitored for symptoms of autoimmune disease after contracting the viral infection. One question remains open, namely, whether the various vaccines developed to end the pandemic will also induce autoimmunity. Recent data highlighted in this review have revealed that the persistence of SARS-CoV-2 and dysfunctional mitochondria in organs such as the heart and, to a lesser extent, the kidneys, liver, and lymph nodes, long after the organism has been able to clear the virus from the lungs, could be an explanation for LC.
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania; (L.M.A.); (C.A.)
| | - Constantin Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania; (L.M.A.); (C.A.)
| | - Gerhard Litscher
- President of the International Society for Medical Laser Applications (ISLA Transcontinental), German Vice President of the German-Chinese Research Foundation (DCFG) for TCM, Honorary President of the European Federation of Acupuncture and Moxibustion Societies, Honorary Professor of China Beijing International Acupuncture Training Center, China Academy of Chinese Medical Sciences, Former Head of Two Research Units and the TCM Research Center at the Medical University of Graz, Auenbruggerplatz, 8036 Graz, Austria
| |
Collapse
|
3
|
Roe K. Pathogen regulatory RNA usage enables chronic infections, T-cell exhaustion and accelerated T-cell exhaustion. Mol Cell Biochem 2023; 478:2505-2516. [PMID: 36941498 PMCID: PMC10027582 DOI: 10.1007/s11010-023-04680-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 02/15/2023] [Indexed: 03/23/2023]
Abstract
Pathogens evade or disable cellular immune defenses using regulatory ribonucleic acids (RNAs), including microRNAs and long non-coding RNAs. Pathogenic usage of regulatory RNA enables chronic infections. Chronic infections, using host regulatory RNAs and/or creating pathogenic regulatory RNAs against cellular defenses, can cause T-cell exhaustion and latent pathogen reactivations. Concurrent pathogen infections of cells enable several possibilities. A first pathogen can cause an accelerated T-cell exhaustion for a second pathogen cellular infection. Accelerated T-cell exhaustion for the second pathogen weakens T-cell targeting of the second pathogen and enables a first-time infection by the second pathogen to replicate quickly and extensively. This can induce a large antibody population, which may be inadequately targeted against the second pathogen. Accelerated T-cell exhaustion can explain the relatively short median and average times from diagnosis to mortality in some viral epidemics, e.g., COVID-19, where the second pathogen can lethally overwhelm individuals' immune defenses. Alternatively, if an individual survives, the second pathogen could induce a very high titer of antigen-antibody immune complexes. If the antigen-antibody immune complex titer quickly becomes very high, it can exceed the immune system's phagocytic capability in immuno-deficient individuals, resulting in a Type III hypersensitivity immune reaction. Accelerated T-cell exhaustion in immuno-deficient individuals can be a fundamental cause of several hyperinflammatory diseases and autoimmune diseases. This would be possible when impaired follicular helper CD4+ T-cell assistance to germinal center B-cell somatic hypermutation, affinity maturation and isotype switching of antibodies results in high titers of inadequate antibodies, and this initiates a Type III hypersensitivity immune reaction with proteinase releases which express or expose autoantigens.
Collapse
|
4
|
Ailioaie LM, Ailioaie C, Litscher G. Infection, Dysbiosis and Inflammation Interplay in the COVID Era in Children. Int J Mol Sci 2023; 24:10874. [PMID: 37446047 PMCID: PMC10342011 DOI: 10.3390/ijms241310874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
For over three years, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in children and adolescents has generated repercussions, especially a few weeks after infection, for symptomatic patients who tested positive, for asymptomatic ones, or even just the contacts of an infected person, and evolved from severe forms such as multisystem inflammatory syndrome in children (MIS-C) to multifarious clinical manifestations in long COVID (LC). Referred to under the umbrella term LC, the onset of persistent and highly heterogeneous symptoms such as fatigue, post-exertion malaise, cognitive dysfunction, and others have a major impact on the child's daily quality of life for months. The first aim of this review was to highlight the circumstances of the pathophysiological changes produced by COVID-19 in children and to better understand the hyperinflammation in COVID-19 and how MIS-C, as a life-threatening condition, could have been avoided in some patients. Another goal was to better identify the interplay between infection, dysbiosis, and inflammation at a molecular and cellular level, to better guide scientists, physicians, and pediatricians to advance new lines of medical action to avoid the post-acute sequelae of SARS-CoV-2 infection. The third objective was to identify symptoms and their connection to molecular pathways to recognize LC more easily. The fourth purpose was to connect the triggering factors of LC with related sequelae following acute SARS-CoV-2 injuries to systems and organs, the persistence of the virus, and some of its components in hidden reservoirs, including the gut and the central nervous system. The reactivation of other latent infectious agents in the host's immune environments, the interaction of this virus with the microbiome, immune hyperactivation, and autoimmunity generated by molecular mimicry between viral agents and host proteins, could initiate a targeted and individualized management. New high-tech solutions, molecules, probiotics, and others should be discovered to innovatively solve the interplay between RNA persistent viruses, microbiota, and our immune system.
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania; (L.M.A.); (C.A.)
| | - Constantin Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania; (L.M.A.); (C.A.)
| | - Gerhard Litscher
- President of the International Society for Medical Laser Applications (ISLA Transcontinental), German Vice President of the German–Chinese Research Foundation (DCFG) for TCM, Honorary President of the European Federation of Acupuncture and Moxibustion Societies, 8053 Graz, Austria
| |
Collapse
|
5
|
Roe K. Accelerated T-cell exhaustion: its potential role in autoimmune disease and hyperinflammatory disease pathogenesis. Hum Cell 2023; 36:866-869. [PMID: 36478089 PMCID: PMC9735067 DOI: 10.1007/s13577-022-00839-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
|
6
|
Litscher G. Licht und Covid-19 — Ein Update. AKUPUNKTUR & AURIKULOMEDIZIN 2023; 49:45-49. [PMCID: PMC10060941 DOI: 10.1007/s15009-023-5840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Licht, Laser und Akupunktur haben auch in der aktuellen Pandemie wichtige Beiträge zur Medizin geleistet. Hauptziel einer vor kurzem veröffentlichten Übersichtsarbeit war es zu untersuchen, wie Licht als therapeutische Methode während der durch COVID-19 ausgelösten Krise bislang eingesetzt wurde. Ein weiteres Ziel ist es, Wissenschaftlerinnen und Wissenschaftler sowie die Industrie zu ermutigen, schnell neue einfache Verfahren der Photobiomodulationstherapie (PBMT) und/oder photodynamischen Therapie (PDT) für zu Hause zu entwickeln. Die bisherigen Ergebnisse zeigten, dass PBMT teilweise erfolgreich bei SARSCoV-2-Infektionen angewendet werden kann und signifikante Verbesserungen bei Atemwegsentzündungen und dem allgemeinen klinischen Zustand der Patientinnen und Patienten ermöglichte. Die Anwendung nur in einer begrenzten Anzahl von Fällen impliziert die Notwendigkeit zukünftiger randomisierter, placebokontrollierter klinischer Studien, um die Wirkung von PBMT und PDT bei COVID-19 tatsächlich zu objektivieren. Bei dieser anhaltenden und herausfordernden Suche nach dem scheinbar nicht greifbaren Ende dieser Pandemie scheinen die PBMT und PDT nicht-invasive, leicht zugängliche, sichere und nebenwirkungsfreie Methoden zu sein.
Collapse
|
7
|
Ailioaie LM, Ailioaie C, Litscher G. Biomarkers in Systemic Juvenile Idiopathic Arthritis, Macrophage Activation Syndrome and Their Importance in COVID Era. Int J Mol Sci 2022; 23:12757. [PMID: 36361547 PMCID: PMC9655921 DOI: 10.3390/ijms232112757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 08/30/2023] Open
Abstract
Systemic juvenile idiopathic arthritis (sJIA) and its complication, macrophage activation syndrome (sJIA-MAS), are rare but sometimes very serious or even critical diseases of childhood that can occasionally be characterized by nonspecific clinical signs and symptoms at onset-such as non-remitting high fever, headache, rash, or arthralgia-and are biologically accompanied by an increase in acute-phase reactants. For a correct positive diagnosis, it is necessary to rule out bacterial or viral infections, neoplasia, and other immune-mediated inflammatory diseases. Delays in diagnosis will result in late initiation of targeted therapy. A set of biomarkers is useful to distinguish sJIA or sJIA-MAS from similar clinical entities, especially when arthritis is absent. Biomarkers should be accessible to many patients, with convenient production and acquisition prices for pediatric medical laboratories, as well as being easy to determine, having high sensitivity and specificity, and correlating with pathophysiological disease pathways. The aim of this review was to identify the newest and most powerful biomarkers and their synergistic interaction for easy and accurate recognition of sJIA and sJIA-MAS, so as to immediately guide clinicians in correct diagnosis and in predicting disease outcomes, the response to treatment, and the risk of relapses. Biomarkers constitute an exciting field of research, especially due to the heterogeneous nature of cytokine storm syndromes (CSSs) in the COVID era. They must be selected with utmost care-a fact supported by the increasingly improved genetic and pathophysiological comprehension of sJIA, but also of CSS-so that new classification systems may soon be developed to define homogeneous groups of patients, although each with a distinct disease.
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania
| | - Constantin Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania
| | - Gerhard Litscher
- Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, Research Unit for Complementary and Integrative Laser Medicine, Traditional Chinese Medicine (TCM) Research Center Graz, Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 39, 8036 Graz, Austria
| |
Collapse
|
8
|
Ailioaie LM, Ailioaie C, Litscher G, Chiran DA. Celiac Disease and Targeting the Molecular Mechanisms of Autoimmunity in COVID Pandemic. Int J Mol Sci 2022; 23:7719. [PMID: 35887067 PMCID: PMC9322892 DOI: 10.3390/ijms23147719] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 12/16/2022] Open
Abstract
Celiac disease (CD) comprises over 1% of the world's population and is a chronic multisystem immune-mediated condition manifested by digestive and/or extradigestive symptoms caused by food intake of gluten. This review looked at the risk of children diagnosed with CD developing SARS-CoV-2 infection and possible severe forms of COVID-19. A better understanding of the interaction and effects of SARS-CoV-2 infection in CD is very important, as is the role of environmental and genetic factors, but especially the molecular mechanisms involved in modulating intestinal permeability with impact on autoimmunity. CD inspired the testing of a zonulin antagonist for the fulminant form of multisystem inflammatory syndrome in children (MIS-C) and paved the way for the discovery of new molecules to regulate the small intestine barrier function and immune responses. Original published works on COVID-19 and CD, new data and points of view have been analyzed because this dangerous virus SARS-CoV-2 is still here and yet influencing our lives. Medical science continues to focus on all uncertainties triggered by SARS-CoV-2 infection and its consequences, including in CD. Although the COVID-19 pandemic seems to be gradually extinguishing, there is a wealth of information and knowledge gained over the last two years and important life lessons to analyze, as well as relevant conclusions to be drawn to deal with future pandemics. Zonulin is being studied extensively in immunoengineering as an adjuvant to improving the absorption of new drugs and oral vaccines.
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania; (L.M.A.); (C.A.)
| | - Constantin Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania; (L.M.A.); (C.A.)
| | - Gerhard Litscher
- Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, Research Unit for Complementary and Integrative Laser Medicine, Traditional Chinese Medicine (TCM) Research Center Graz, Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 39, 8036 Graz, Austria
| | - Dragos Andrei Chiran
- Department of Morpho-Functional Sciences I, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii St., 700115 Iasi, Romania;
| |
Collapse
|
9
|
Ailioaie LM, Ailioaie C, Litscher G, Chiran DA. Celiac Disease and Targeting the Molecular Mechanisms of Autoimmunity in COVID Pandemic. Int J Mol Sci 2022. [PMID: 35887067 DOI: 10.3390/ijms23147719.pmid:35887067;pmcid:pmc9322892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Celiac disease (CD) comprises over 1% of the world's population and is a chronic multisystem immune-mediated condition manifested by digestive and/or extradigestive symptoms caused by food intake of gluten. This review looked at the risk of children diagnosed with CD developing SARS-CoV-2 infection and possible severe forms of COVID-19. A better understanding of the interaction and effects of SARS-CoV-2 infection in CD is very important, as is the role of environmental and genetic factors, but especially the molecular mechanisms involved in modulating intestinal permeability with impact on autoimmunity. CD inspired the testing of a zonulin antagonist for the fulminant form of multisystem inflammatory syndrome in children (MIS-C) and paved the way for the discovery of new molecules to regulate the small intestine barrier function and immune responses. Original published works on COVID-19 and CD, new data and points of view have been analyzed because this dangerous virus SARS-CoV-2 is still here and yet influencing our lives. Medical science continues to focus on all uncertainties triggered by SARS-CoV-2 infection and its consequences, including in CD. Although the COVID-19 pandemic seems to be gradually extinguishing, there is a wealth of information and knowledge gained over the last two years and important life lessons to analyze, as well as relevant conclusions to be drawn to deal with future pandemics. Zonulin is being studied extensively in immunoengineering as an adjuvant to improving the absorption of new drugs and oral vaccines.
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania
| | - Constantin Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania
| | - Gerhard Litscher
- Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, Research Unit for Complementary and Integrative Laser Medicine, Traditional Chinese Medicine (TCM) Research Center Graz, Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 39, 8036 Graz, Austria
| | - Dragos Andrei Chiran
- Department of Morpho-Functional Sciences I, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii St., 700115 Iasi, Romania
| |
Collapse
|