1
|
Hu X, Lin L, Wu Z. Investigation of brain structures and potential mechanisms associated with ADHD: Insights from Mendelian randomization and genetic analysis. J Affect Disord 2025; 379:519-528. [PMID: 40054538 DOI: 10.1016/j.jad.2025.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
OBJECTIVE Despite extensive studies linking brain structure with attention deficit hyperactivity disorder (ADHD), the causal relationships remain unclear. This study employs Mendelian randomization (MR) to assess these associations and explores the underlying mechanisms. METHODS Utilizing genetic instruments from genome - wide association study (GWAS) data of 83 magnetic resonance imaging (MRI) studies sourced from the psychiatric genomics consortium (PGC) and integrative epidemiology unit (IEU), MR analyses were conducted to investigate the link between brain structures and ADHD. The Allen Human Brain Atlas was used to identify genes associated with significant brain structures, followed by gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG), and pathway enrichment analyses, and construction of protein - protein interaction (PPI) networks. RESULTS Intersection analysis from two MR studies highlighted 17 brain structures, such as the left caudal and rostral middle frontal volumes and right medial orbitofrontal volume, exhibiting strong negative correlations with ADHD symptoms (FDR < 0.05). These structures span the frontal, temporal, and parietal lobes, among others. Differential expression analysis showed these genes predominantly relate to pervasive developmental and autistic disorders, with functions including modulation of synaptic transmission. KEGG pathways identified neuroactive ligand-receptor interaction as significantly involved. PPI analysis pinpointed key proteins like SLC17A7, CAMK2A, and SST as critical hubs. CONCLUSION This research confirms negative correlations between certain brain structures and ADHD and implicates neuroactive ligand-receptor interactions in its pathogenesis, enhancing our understanding of ADHD's anatomical and genetic bases.
Collapse
Affiliation(s)
- Xiaoyun Hu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China; Guangdong Clinical Research Academy of Chinese Medicine, China
| | - Liyu Lin
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China; Guangzhou University of Chinese Medicine, China
| | - Zilun Wu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China; Guangzhou University of Chinese Medicine, China
| |
Collapse
|
2
|
Parlatini V, Bellato A, Murphy D, Cortese S. From neurons to brain networks, pharmacodynamics of stimulant medication for ADHD. Neurosci Biobehav Rev 2024; 164:105841. [PMID: 39098738 DOI: 10.1016/j.neubiorev.2024.105841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Stimulants represent the first line pharmacological treatment for attention-deficit/hyperactivity disorder (ADHD) and are among the most prescribed psychopharmacological treatments. Their mechanism of action at synaptic level has been extensively studied. However, it is less clear how their mechanism of action determines clinically observed benefits. To help bridge this gap, we provide a comprehensive review of stimulant effects, with an emphasis on nuclear medicine and magnetic resonance imaging (MRI) findings. There is evidence that stimulant-induced modulation of dopamine and norepinephrine neurotransmission optimizes engagement of task-related brain networks, increases perceived saliency, and reduces interference from the default mode network. An acute administration of stimulants may reduce brain alterations observed in untreated individuals in fronto-striato-parieto-cerebellar networks during tasks or at rest. Potential effects of prolonged treatment remain controversial. Overall, neuroimaging has fostered understanding on stimulant mechanism of action. However, studies are often limited by small samples, short or no follow-up, and methodological heterogeneity. Future studies should address age-related and longer-term effects, potential differences among stimulants, and predictors of treatment response.
Collapse
Affiliation(s)
- Valeria Parlatini
- School of Psychology, University of Southampton, Southampton, United Kingdom; Centre for Innovation in Mental Health, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom; Solent NHS Trust, Southampton, United Kingdom.
| | - Alessio Bellato
- School of Psychology, University of Southampton, Southampton, United Kingdom; Centre for Innovation in Mental Health, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Solent NHS Trust, Southampton, United Kingdom; School of Psychology, University of Nottingham, Semenyih, Malaysia
| | - Declan Murphy
- Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Samuele Cortese
- School of Psychology, University of Southampton, Southampton, United Kingdom; Centre for Innovation in Mental Health, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Solent NHS Trust, Southampton, United Kingdom; Mind and Neurodevelopment (MiND) Research Group, University of Nottingham, Semenyih, Malaysia; Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, United Kingdom; Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York, NY, USA
| |
Collapse
|
3
|
Ferranti AS, Luessen DJ, Niswender CM. Novel pharmacological targets for GABAergic dysfunction in ADHD. Neuropharmacology 2024; 249:109897. [PMID: 38462041 PMCID: PMC11843668 DOI: 10.1016/j.neuropharm.2024.109897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Attention deficit/hyperactivity disorder (ADHD) is a neurodevelopment disorder that affects approximately 5% of the population. The disorder is characterized by impulsivity, hyperactivity, and deficits in attention and cognition, although symptoms vary across patients due to the heterogenous and polygenic nature of the disorder. Stimulant medications are the standard of care treatment for ADHD patients, and their effectiveness has led to the dopaminergic hypothesis of ADHD in which deficits in dopaminergic signaling, especially in cortical brain regions, mechanistically underly ADHD pathophysiology. Despite their effectiveness in many individuals, almost one-third of patients do not respond to stimulant treatments and the long-term negative side effects of these medications remain unclear. Emerging clinical evidence is beginning to highlight an important role of dysregulated excitatory/inhibitory (E/I) balance in ADHD. These deficits in E/I balance are related to functional abnormalities in glutamate and Gamma-Aminobutyric Acid (GABA) signaling in the brain, with increasing emphasis placed on GABAergic interneurons driving specific aspects of ADHD pathophysiology. Recent genome-wide association studies (GWAS) have also highlighted how genes associated with GABA function are mutated in human populations with ADHD, resulting in the generation of several new genetic mouse models of ADHD. This review will discuss how GABAergic dysfunction underlies ADHD pathophysiology, and how specific receptors/proteins related to GABAergic interneuron dysfunction may be pharmacologically targeted to treat ADHD in subpopulations with specific comorbidities and symptom domains. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Anthony S Ferranti
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA
| | - Deborah J Luessen
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
4
|
Maletic V, Mattingly GW, Earnest J. Viloxazine extended-release capsules as an emerging treatment for attention-deficit/hyperactivity disorder in children and adolescents. Expert Rev Neurother 2024; 24:443-455. [PMID: 38502148 DOI: 10.1080/14737175.2024.2327533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
INTRODUCTION Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by inattention and/or hyperactivity and impulsivity. Viloxazine extended-release (ER) capsules (Qelbree®) is a US Food and Drug Administration-approved nonstimulant treatment option for children, adolescents, and adults with ADHD. AREAS COVERED This review manuscript summarizes the neurobiology of ADHD and currently available treatment options before discussing viloxazine pharmacology, efficacy, safety, and tolerability data from phase II and III trials in children and adolescents (6-17 years old). Viloxazine clinical efficacy has also been further demonstrated by post hoc analyses of pediatric clinical trial results. EXPERT OPINION Current stimulant and nonstimulant treatments for ADHD may be suboptimal given low response rates and that tolerability issues are frequently experienced. Preclinical and clinical evidence has implicated both the role of catecholamine and serotonin signaling in the pathophysiology of ADHD and the pharmacologic effect of viloxazine on these critical neurotransmitter systems. With a relatively rapid onset of action, sustained symptom improvement, and clinical benefit in ADHD-associated impairments (functional and social), viloxazine ER represents a novel and emerging ADHD treatment option.
Collapse
Affiliation(s)
- Vladimir Maletic
- Department of Psychiatry and Behavioral Science, University of South Carolina School of Medicine, Greenville, SC, USA
| | - Gregory W Mattingly
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Jami Earnest
- Medical Affairs, Supernus Pharmaceuticals, Inc, Rockville, MD, USA
| |
Collapse
|
5
|
Song Y, Hupfeld KE, Davies-Jenkins CW, Zöllner HJ, Murali-Manohar S, Mumuni AN, Crocetti D, Yedavalli V, Oeltzschner G, Alessi N, Batschelett MA, Puts NA, Mostofsky SH, Edden RA. Brain glutathione and GABA+ levels in autistic children. Autism Res 2024; 17:512-528. [PMID: 38279628 PMCID: PMC10963146 DOI: 10.1002/aur.3097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/28/2023] [Indexed: 01/28/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by social communication challenges and repetitive behaviors. Altered neurometabolite levels, including glutathione (GSH) and gamma-aminobutyric acid (GABA), have been proposed as potential contributors to the biology underlying ASD. This study investigated whether cerebral GSH or GABA levels differ between a cohort of children aged 8-12 years with ASD (n = 52) and typically developing children (TDC, n = 49). A comprehensive analysis of GSH and GABA levels in multiple brain regions, including the primary motor cortex (SM1), thalamus (Thal), medial prefrontal cortex (mPFC), and supplementary motor area (SMA), was conducted using single-voxel HERMES MR spectroscopy at 3T. The results revealed no significant differences in cerebral GSH or GABA levels between the ASD and TDC groups across all examined regions. These findings suggest that the concentrations of GSH (an important antioxidant and neuromodulator) and GABA (a major inhibitory neurotransmitter) do not exhibit marked alterations in children with ASD compared to TDC. A statistically significant positive correlation was observed between GABA levels in the SM1 and Thal regions with ADHD inattention scores. No significant correlation was found between metabolite levels and hyper/impulsive scores of ADHD, measures of core ASD symptoms (ADOS-2, SRS-P) or adaptive behavior (ABAS-2). While both GSH and GABA have been implicated in various neurological disorders, the current study provides valuable insights into the specific context of ASD and highlights the need for further research to explore other neurochemical alterations that may contribute to the pathophysiology of this complex disorder.
Collapse
Affiliation(s)
- Yulu Song
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Kathleen E. Hupfeld
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Christopher W. Davies-Jenkins
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Helge J. Zöllner
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Saipavitra Murali-Manohar
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | | | - Deana Crocetti
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Vivek Yedavalli
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Georg Oeltzschner
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Natalie Alessi
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Mitchell A. Batschelett
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Nicolaas A.J. Puts
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
- MRC Center for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Stewart H. Mostofsky
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Richard A.E. Edden
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
6
|
Qu S, Zhou X, Wang Z, Wei Y, Zhou H, Zhang X, Zhu Q, Wang Y, Yang Q, Jiang L, Ma Y, Gao Y, Kong L, Zhang L. The effects of methylphenidate and atomoxetine on Drosophila brain at single-cell resolution and potential drug repurposing for ADHD treatment. Mol Psychiatry 2024; 29:165-185. [PMID: 37957291 PMCID: PMC11078728 DOI: 10.1038/s41380-023-02314-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
The stimulant methylphenidate (MPH) and the non-stimulant atomoxetine (ATX) are frequently used for the treatment of attention-deficit/hyperactivity disorder (ADHD); however, the function of these drugs in different types of brain cells and their effects on related genes remain largely unknown. To address these questions, we built a pipeline for the simultaneous examination of the activity behavior and transcriptional responses of Drosophila melanogaster at single-cell resolution following drug treatment. We selected the Drosophila with significantly increased locomotor activities (hyperactivity-like behavior) following the administration of each drug in comparison with the control (same food as the drug-treated groups with 5% sucrose, yeast, and blue food dye solution) using EasyFlyTracker. Subsequently, single cell RNA sequencing (scRNASEQ) was used to capture the transcriptome of 82,917 cells, unsupervised clustering analysis of which yielded 28 primary cell clusters representing the major cell types in adult Drosophila brain. Indeed, both neuronal and glial cells responded to MPH and ATX. Further analysis of differentially expressed genes (DEGs) revealed distinct transcriptional changes associated with these two drugs, such as two well-studied dopamine receptor genes (Dop2R and DopEcR) were responsive to MPH but not to ATX at their optimal doses, in addition to genes involved in dopamine metabolism pathways such as Syt1, Sytalpha, Syt7, and Ih in different cell types. More importantly, MPH also suppressed the expression of genes encoding other neurotransmitter receptors and synaptic signaling molecules in many cell types, especially those for Glu and GABA, while the responsive effects of ATX were much weaker. In addition to monoaminergic neuronal transmitters, other neurotransmitters have also shown a similar pattern with respect to a stronger effect associated with MPH than with ATX. Moreover, we identified four distinct glial cell subtypes responsive to the two drugs and detected a greater number of differentially expressed genes associated with ensheathing and astrocyte-like glia. Furthermore, our study provides a rich resource of candidate target genes, supported by drug set enrichment analysis (P = 2.10E-4; hypergeometric test), for the further exploration of drug repurposing. The whole list of candidates can be found at ADHDrug ( http://adhdrug.cibr.ac.cn/ ). In conclusion, we propose a fast and cost-efficient pipeline to explore the underlying molecular mechanisms of ADHD drug treatment in Drosophila brain at single-cell resolution, which may further facilitate drug repurposing applications.
Collapse
Affiliation(s)
- Susu Qu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
| | - Xiangyu Zhou
- Chinese Institute for Brain Research, Beijing, China
| | - Zhicheng Wang
- Chinese Institute for Brain Research, Beijing, China
| | - Yi Wei
- Chinese Institute for Brain Research, Beijing, China
| | - Han Zhou
- Chinese Institute for Brain Research, Beijing, China
| | | | - Qingjie Zhu
- Chinese Institute for Brain Research, Beijing, China
| | - Yanmin Wang
- Chinese Institute for Brain Research, Beijing, China
| | - Quanjun Yang
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Likun Jiang
- Department of Computer Science, Xiamen University, Xiamen, China
| | - Yuan Ma
- Chinese Institute for Brain Research, Beijing, China
| | - Yuan Gao
- Chinese Institute for Brain Research, Beijing, China
| | - Lei Kong
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
7
|
Song Y, Hupfeld KE, Davies-Jenkins CW, Zöllner HJ, Murali-Manohar S, Mumuni AN, Crocetti D, Yedavalli V, Oeltzschner G, Alessi N, Batschelett MA, Puts NAJ, Mostofsky SH, Edden RAE. Brain Glutathione and GABA+ levels in autistic children. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.559718. [PMID: 37808813 PMCID: PMC10557661 DOI: 10.1101/2023.09.28.559718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by social communication challenges and repetitive behaviors. Altered neurometabolite levels, including glutathione (GSH) and gamma-aminobutyric acid (GABA), have been proposed as potential contributors to the biology underlying ASD. This study investigated whether cerebral GSH or GABA levels differ between a large cohort of children aged 8-12 years with ASD (n=52) and typically developing children (TDC, n=49). A comprehensive analysis of GSH and GABA levels in multiple brain regions, including the primary motor cortex (SM1), thalamus (Thal), medial prefrontal cortex (mPFC), and supplementary motor area (SMA), was conducted using single-voxel HERMES MR spectroscopy at 3T. The results revealed no significant differences in cerebral GSH or GABA levels between the ASD and TDC groups across all examined regions. These findings suggest that the concentrations of GSH (an important antioxidant and neuromodulator) and GABA (a major inhibitory neurotransmitter) do not exhibit marked alterations in children with ASD compared to TDC. A statistically significant positive correlation was observed between GABA levels in the SM1 and Thal regions with ADHD inattention scores. No significant correlation was found between metabolite levels and hyper/impulsive scores of ADHD, measures of core ASD symptoms (ADOS-2, SRS-P) or adaptive behavior (ABAS-2). While both GSH and GABA have been implicated in various neurological disorders, the current study provides valuable insights into the specific context of ASD and highlights the need for further research to explore other neurochemical alterations that may contribute to the pathophysiology of this complex disorder.
Collapse
Affiliation(s)
- Yulu Song
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Kathleen E Hupfeld
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Christopher W Davies-Jenkins
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Helge J Zöllner
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Saipavitra Murali-Manohar
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | | | - Deana Crocetti
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Vivek Yedavalli
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Georg Oeltzschner
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Natalie Alessi
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Mitchell A Batschelett
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Nicolaas A J Puts
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- MRC Center for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Stewart H Mostofsky
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Richard A E Edden
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
8
|
Event-related potentials during mental rotation of body-related stimuli in spinal cord injury population. Neuropsychologia 2023; 179:108447. [PMID: 36521630 DOI: 10.1016/j.neuropsychologia.2022.108447] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/13/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
Mental rotations of body-related stimuli are known to engage the motor system and activate body schema. Sensorimotor deficits following spinal cord injury (SCI) alter the representation of the body with a negative impact on the performance during motor-related tasks, such as mental rotation of body parts. Here we investigated the relationship between event-related potentials in SCI participants and the difficulty in mentally rotating a body-part. Participants with SCI and healthy control subjects performed a laterality judgment task, in which left or right images of hands, feet or animals (as a control stimulus) were presented in two different orientation angles (75° and 150°), and participants reported the laterality of the stimulus. We found that reaction times of participants with SCI were slower for the rotation of body-related stimuli compared to non-body-related stimuli and healthy controls. At the brain level, we found that relative to healthy controls SCI participants show: 1) reduced amplitudes of the posterior P100 and anterior N100 and larger amplitudes of the anterior P200 for overall stimuli; 2) an absence of the modulation of the rotation related negativity by stimulus type and rotation angles. Our results show that body representation changes after SCI affecting both components of early stimulus processing and late components that process high-order cognitive aspects of body-representation and task complexity.
Collapse
|