1
|
Li Y, Kučera O, Cuvelier D, Rutkowski DM, Deygas M, Rai D, Pavlovič T, Vicente FN, Piel M, Giannone G, Vavylonis D, Akhmanova A, Blanchoin L, Théry M. Compressive forces stabilize microtubules in living cells. NATURE MATERIALS 2023; 22:913-924. [PMID: 37386067 PMCID: PMC10569437 DOI: 10.1038/s41563-023-01578-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/16/2023] [Indexed: 07/01/2023]
Abstract
Microtubules are cytoskeleton components with unique mechanical and dynamic properties. They are rigid polymers that alternate phases of growth and shrinkage. Nonetheless, the cells can display a subset of stable microtubules, but it is unclear whether microtubule dynamics and mechanical properties are related. Recent in vitro studies suggest that microtubules have mechano-responsive properties, being able to stabilize their lattice by self-repair on physical damage. Here we study how microtubules respond to cycles of compressive forces in living cells and find that microtubules become distorted, less dynamic and more stable. This mechano-stabilization depends on CLASP2, which relocates from the end to the deformed shaft of microtubules. This process seems to be instrumental for cell migration in confined spaces. Overall, these results demonstrate that microtubules in living cells have mechano-responsive properties that allow them to resist and even counteract the forces to which they are subjected, being a central mediator of cellular mechano-responses.
Collapse
Affiliation(s)
- Yuhui Li
- Univ. Paris, INSERM, CEA, UMRS1160, Institut de Recherche Saint Louis, CytoMorpho Lab, Hôpital Saint Louis, Paris, France
- Univ. Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Phyiologie Cellulaire & Végétale, CytoMorpho Lab, Grenoble, France
| | - Ondřej Kučera
- Univ. Paris, INSERM, CEA, UMRS1160, Institut de Recherche Saint Louis, CytoMorpho Lab, Hôpital Saint Louis, Paris, France
- Univ. Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Phyiologie Cellulaire & Végétale, CytoMorpho Lab, Grenoble, France
- Department of Engineering Technology, South East Technological University, Waterford, Ireland
| | - Damien Cuvelier
- Institut Curie, UMR144, Paris, France
- Institut Pierre-Gilles de Gennes, Paris, France
- Sorbonne Université, F-75005, Paris, France
| | | | - Mathieu Deygas
- Institut Curie, UMR144, Paris, France
- Institut Pierre-Gilles de Gennes, Paris, France
| | - Dipti Rai
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Tonja Pavlovič
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Filipe Nunes Vicente
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Matthieu Piel
- Institut Curie, UMR144, Paris, France
- Institut Pierre-Gilles de Gennes, Paris, France
| | - Grégory Giannone
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | | | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Laurent Blanchoin
- Univ. Paris, INSERM, CEA, UMRS1160, Institut de Recherche Saint Louis, CytoMorpho Lab, Hôpital Saint Louis, Paris, France.
- Univ. Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Phyiologie Cellulaire & Végétale, CytoMorpho Lab, Grenoble, France.
| | - Manuel Théry
- Univ. Paris, INSERM, CEA, UMRS1160, Institut de Recherche Saint Louis, CytoMorpho Lab, Hôpital Saint Louis, Paris, France.
- Univ. Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Phyiologie Cellulaire & Végétale, CytoMorpho Lab, Grenoble, France.
| |
Collapse
|
2
|
Zhang H, Zhang K, Li M, Shao Y, Feng XQ. Force-Regulated State Transitions of Growing Axons. PHYSICAL REVIEW LETTERS 2022; 129:128101. [PMID: 36179209 DOI: 10.1103/physrevlett.129.128101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Growing axons are one-dimensional active structures that are important for wiring the brain and repairing nerves. However, the biophysical mechanisms underlying the complex kinetics of growing axons remain elusive. Here, we develop a theoretical framework to recapitulate force-regulated states and their transitions in growing axons. We demonstrate a unique negative feedback mechanism that defines four distinct kinetic states in a growing axon, whose transitional boundaries depend on the interplay between cytoskeletal dynamics and axon-substrate adhesion. A phase diagram for axonal growth is formulated based on two dimensionless numbers.
Collapse
Affiliation(s)
- Huanxin Zhang
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Kaixuan Zhang
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Min Li
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Yue Shao
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Pei F, Wang M, Wang Y, Pan X, Cen X, Huang X, Jin Y, Zhao Z. Quantitative proteomic analysis of gingival crevicular fluids to identify novel biomarkers of gingival recession in orthodontic patients. J Proteomics 2022; 266:104647. [PMID: 35779762 DOI: 10.1016/j.jprot.2022.104647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/23/2022] [Accepted: 06/04/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To identify gingival recession-related biomarkers in orthodontic patients, we compared the proteome of gingival crevicular fluids (GCF) from healthy gingiva without orthodontic treatment (GH), healthy gingiva undergoing orthodontic treatment (OGH), and recessed gingiva undergoing orthodontic treatment (OGR). METHODS GCF samples were obtained from the anterior teeth of 15 volunteers (n = 5/group). Quantitative proteomic analysis was performed using DIA-based liquid chromatography-tandem mass spectrometry (LC-MS/MS). Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were used to annotate differentially expressed proteins (DEPs). Receiver-operating characteristic (ROC) analysis was performed to detect and filter biomarker candidates, while Protein-Protein Interaction (PPI) Networks were utilized to determine the interactions between these DEPs. RESULTS A total of 253, 238, and 101 DEPs were found in OGR vs. OGH, OGR vs. GH, and OGH vs. GH groups, respectively. Based on the Venn diagram of three groups, 128 DEPs in OGR vs. OGH group were identified as specific proteins associated with progressive gingival recession (GR) during orthodontic treatment. Molecular function analysis showed that 128 DEPs were enriched in "molecular binding", including antigen binding, RNA binding, double-stranded RNA binding, cadherin binding involved in cell-cell adhesion, vinculin binding, S100 protein binding, and Ral GTPase binding. The majority of these DEPs were also involved in cytoskeletal regulation. In addition, biological process analysis showed an enrichment in translation, while cellular component analysis indicated that 128 DEPs were related to extracellular exosome. Furthermore, Ribosome and Phagosome were the top two terms in KEGG analysis. The results of ROC analysis demonstrated that 26 proteins could be potential biomarker candidates for GR. PPI networks analysis predicted that IQGAP1, ACTN1, TLN1, VASP, FN1, FERMT3, MYO1C, RALA, RPL35, SEC61G, KPNB1, and NPM1 could be involved in the development of GR via cytoskeletal regulation. CONCLUSIONS In summary, we identified several GCF proteins associated with GR after orthodontic treatment. These findings could contribute to the prevention of GR in susceptible patients before the initiation of orthodontic treatment. SIGNIFICANCE Orthodontic patients with GR often report esthetic defects or root hypersensitivity during orthodontic treatment, especially at the anterior teeth site. GCF, rich in protein, is an easily accessible source of potential biomarkers for the diagnosis of periodontal diseases; however, little is known about the changes in GCF proteome associated with GR in orthodontic patients. In this study we firstly used DIA-based LC-MS/MS to evaluate the proteome and to identify the biomarker candidates for GR in orthodontic patients. These findings will improve our understanding of GR during orthodontic treatment, and could contribute to an earlier diagnosis, or even prevention, of GR in susceptible populations before orthodontic treatment.
Collapse
Affiliation(s)
- Fang Pei
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mengjiao Wang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yifan Wang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuefeng Pan
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiao Cen
- Department of Temporomandibular Joint, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Xinqi Huang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Ying Jin
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Zhihe Zhao
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|