1
|
Della Morte E, Giannasi C, Valenza A, Cadelano F, Aldegheri A, Zagra L, Niada S, Brini AT. Connexin 43 Modulation in Human Chondrocytes, Osteoblasts and Cartilage Explants: Implications for Inflammatory Joint Disorders. Int J Mol Sci 2024; 25:8547. [PMID: 39126115 PMCID: PMC11313680 DOI: 10.3390/ijms25158547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Connexin 43 (Cx43) is crucial for the development and homeostasis of the musculoskeletal system, where it plays multifaceted roles, including intercellular communication, transcriptional regulation and influencing osteogenesis and chondrogenesis. Here, we investigated Cx43 modulation mediated by inflammatory stimuli involved in osteoarthritis, i.e., 10 ng/mL Tumor Necrosis Factor alpha (TNFα) and/or 1 ng/mL Interleukin-1 beta (IL-1β), in primary chondrocytes (CH) and osteoblasts (OB). Additionally, we explored the impact of synovial fluids from osteoarthritis patients in CH and cartilage explants, providing a more physio-pathological context. The effect of TNFα on Cx43 expression in cartilage explants was also assessed. TNFα downregulated Cx43 levels both in CH and OB (-73% and -32%, respectively), while IL-1β showed inconclusive effects. The reduction in Cx43 levels was associated with a significant downregulation of the coding gene GJA1 expression in OB only (-65%). The engagement of proteasome in TNFα-induced effects, already known in CH, was also observed in OB. TNFα treatment significantly decreased Cx43 expression also in cartilage explants. Of note, Cx43 expression was halved by synovial fluid in both CH and cartilage explants. This study unveils the regulation of Cx43 in diverse musculoskeletal cell types under various stimuli and in different contexts, providing insights into its modulation in inflammatory joint disorders.
Collapse
Affiliation(s)
- Elena Della Morte
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.G.); (A.V.); (F.C.); (A.T.B.)
| | - Chiara Giannasi
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.G.); (A.V.); (F.C.); (A.T.B.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20129 Milan, Italy
| | - Alice Valenza
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.G.); (A.V.); (F.C.); (A.T.B.)
| | - Francesca Cadelano
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.G.); (A.V.); (F.C.); (A.T.B.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20129 Milan, Italy
| | - Alessandro Aldegheri
- Hip Department, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (A.A.); (L.Z.)
| | - Luigi Zagra
- Hip Department, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (A.A.); (L.Z.)
| | - Stefania Niada
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.G.); (A.V.); (F.C.); (A.T.B.)
| | - Anna Teresa Brini
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.G.); (A.V.); (F.C.); (A.T.B.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20129 Milan, Italy
| |
Collapse
|
2
|
Xiong X, Chen W, Chen C, Wu Q, He C. Analysis of the function and therapeutic strategy of connexin 43 from its subcellular localization. Biochimie 2024; 218:1-7. [PMID: 37611889 DOI: 10.1016/j.biochi.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Connexins (Cxs) are a family of transmembrane proteins located in the plasma membrane of human cells, among which connexin 43 (Cx43) is abundantly expressed in various types of human cells. Cx43, encoded by the gap junction protein alpha 1 (GJA1) gene, assembles into a hexameric structure in the Golgi apparatus and translocates to the plasma membrane to form hemichannels (Hcs), which pair with those of the cells in contact with each other and form gap junction intercellular communication (GJIC). The role of Cx43 as a connexin localized at the plasma membrane to perform channel functions is well recognized in previous studies, but recent studies have found that it can also be localized in the nucleus, mitochondria, or present in extracellular vesicles (EVs) and tunneling nanotubes (TNTs). Cx43 in the nucleus is involved in gene transcription regulation, cytoskeleton formation, cell migration and adhesion. Cx43 in mitochondria is involved in mitochondrial respiration-related functions, and Cx43 in extracellular vesicles and tunneling nanotubes is involved in distant cellular information exchange. It is because of the diverse distribution of subcellular localization of Cx43 that it is possible to explore the corresponding functions by analyzing its localization. In this review, we summarize the important roles of Cx43 in disease development from the perspective of subcellular localization, and provide new ideas for Cx43 as a therapeutic target and the search for related pathological mechanisms.
Collapse
Affiliation(s)
- Xinhai Xiong
- The Second Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410003, China
| | - Wenjie Chen
- The Second Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410003, China
| | - Cheng Chen
- The Second Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410003, China; 926 Hospital of the People's Liberation Army, Kaiyuan, Yunnan, 661600, China.
| | - Qi Wu
- The Second Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410003, China
| | - Chaopeng He
- The Second Xiangya Hospital, Changsha, Hunan, 410011, China
| |
Collapse
|
3
|
Lucaciu SA, Leighton SE, Hauser A, Yee R, Laird DW. Diversity in connexin biology. J Biol Chem 2023; 299:105263. [PMID: 37734551 PMCID: PMC10598745 DOI: 10.1016/j.jbc.2023.105263] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
Over 35 years ago the cell biology community was introduced to connexins as the subunit employed to assemble semicrystalline clusters of intercellular channels that had been well described morphologically as gap junctions. The decade that followed would see knowledge of the unexpectedly large 21-member human connexin family grow to reflect unique and overlapping expression patterns in all organ systems. While connexin biology initially focused on their role in constructing highly regulated intercellular channels, this was destined to change as discoveries revealed that connexin hemichannels at the cell surface had novel roles in many cell types, especially when considering connexin pathologies. Acceptance of connexins as having bifunctional channel properties was initially met with some resistance, which has given way in recent years to the premise that connexins have multifunctional properties. Depending on the connexin isoform and cell of origin, connexins have wide-ranging half-lives that vary from a couple of hours to the life expectancy of the cell. Diversity in connexin channel characteristics and molecular properties were further revealed by X-ray crystallography and single-particle cryo-EM. New avenues have seen connexins or connexin fragments playing roles in cell adhesion, tunneling nanotubes, extracellular vesicles, mitochondrial membranes, transcription regulation, and in other emerging cellular functions. These discoveries were largely linked to Cx43, which is prominent in most human organs. Here, we will review the evolution of knowledge on connexin expression in human adults and more recent evidence linking connexins to a highly diverse array of cellular functions.
Collapse
Affiliation(s)
- Sergiu A Lucaciu
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Stephanie E Leighton
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Alexandra Hauser
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Ryan Yee
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Dale W Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
4
|
Li Y, Zhang Y, Dong Y, Akakuru OU, Yao X, Yi J, Li X, Wang L, Lou X, Zhu B, Fan K, Qin Z. Ablation of Gap Junction Protein Improves the Efficiency of Nanozyme-Mediated Catalytic/Starvation/Mild-Temperature Photothermal Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210464. [PMID: 36964940 DOI: 10.1002/adma.202210464] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/22/2023] [Indexed: 06/02/2023]
Abstract
Reactive oxygen species (ROS)-mediated tumor catalytic therapy is typically hindered by gap junction proteins that form cell-to-cell channels to remove cytotoxic ROS, thereby protecting tumor cells from oxidative damage. In this work, a multifunctional nanozyme, FePGOGA, is designed and prepared by Fe(III)-mediated oxidative polymerization (FeP), followed by glucose oxidase (GOx) and GAP19 peptides co-loading through electrostatic and π-π interactions. The FePGOGA nanozyme exhibits excellent cascade peroxidase- and glutathione-oxidase-like activities that efficiently catalyze hydrogen peroxide conversion to hydroxyl radicals and convert reduced glutathione to oxidized glutathione disulfide. The loaded GOx starves the tumors and aggravates tumor oxidative stress through glucose decomposition, while GAP19 peptides block the hemichannels by inducing degradation of Cx43, thus increasing the accumulation of intracellular ROS, and decreasing the transport of intracellular glucose. Furthermore, the ROS reacts with primary amines of heat shock proteins to destroy their structure and function, enabling tumor photothermal therapy at the widely sought-after mild temperature (mildPTT, ≤45 °C). In vivo experiments demonstrate the significant antitumor effectof FePGOGA on cal27 xenograft tumors under near-infrared light irradiation. This study demonstrates the successful ablation of gap junction proteins to overcome resistance to ROS-mediated therapy, providing a regulator to suppress tumor self-preservation during tumor starvation, catalytic therapy, and mildPTT.
Collapse
Affiliation(s)
- Yongjuan Li
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yu Zhang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Ya Dong
- Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Ozioma Udochukwu Akakuru
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Xiaohan Yao
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jinmeng Yi
- Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xinyan Li
- Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Linlin Wang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xiaohan Lou
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Baoyu Zhu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Kelong Fan
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
| | - Zhihai Qin
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|
5
|
Kang K, Ma YD, Liu SQ, Huang RW, Chen JJ, An LL, Wu J. SARS-CoV-2 Structural Proteins Modulated Blood-Testis Barrier-Related Proteins through Autophagy in the Primary Sertoli Cells. Viruses 2023; 15:1272. [PMID: 37376572 DOI: 10.3390/v15061272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) disrupts the blood-testis barrier (BTB), resulting in alterations in spermatogenesis. However, whether BTB-related proteins (such as ZO-1, claudin11, N-cadherin, and CX43) are targeted by SARS-CoV-2 remains to be clarified. BTB is a physical barrier between the blood vessels and the seminiferous tubules of the animal testis, and it is one of the tightest blood-tissue barriers in the mammalian body. In this study, we investigated the effects of viral proteins, via ectopic expression of individual viral proteins, on BTB-related proteins, the secretion of immune factors, and the formation and degradation of autophagosomes in human primary Sertoli cells. Our study demonstrated that ectopic expression of viral E (envelope protein) and M (membrane protein) induced the expressions of ZO-1 and claudin11, promoted the formation of autophagosomes, and inhibited autophagy flux. S (spike protein) reduced the expression of ZO-1, N-cadherin, and CX43, induced the expression of claudin11, and inhibited the formation and degradation of autophagosomes. N (nucleocapsid protein) reduced the expression of ZO-1, claudin11, and N-cadherin. All the structural proteins (SPs) E, M, N, and S increased the expression of the FasL gene, and the E protein promoted the expression and secretion of FasL and TGF-β proteins and the expression of IL-1. Blockage of autophagy by specific inhibitors resulted in the suppression of BTB-related proteins by the SPs. Our results indicated that SARS-CoV-2 SPs (E, M, and S) regulate BTB-related proteins through autophagy.
Collapse
Affiliation(s)
- Kai Kang
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yao-Dan Ma
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Si-Qi Liu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ri-Wei Huang
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jin-Jun Chen
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Li-Long An
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiang Wu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
6
|
Kiełbowski K, Bakinowska E, Pawlik A. The Potential Role of Connexins in the Pathogenesis of Atherosclerosis. Int J Mol Sci 2023; 24:ijms24032600. [PMID: 36768920 PMCID: PMC9916887 DOI: 10.3390/ijms24032600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/29/2022] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Connexins (Cx) are members of a protein family which enable extracellular and intercellular communication through hemichannels and gap junctions (GJ), respectively. Cx take part in transporting important cell-cell messengers such as 3',5'-cyclic adenosine monophosphate (cAMP), adenosine triphosphate (ATP), and inositol 1,4,5-trisphosphate (IP3), among others. Therefore, they play a significant role in regulating cell homeostasis, proliferation, and differentiation. Alterations in Cx distribution, degradation, and post-translational modifications have been correlated with cancers, as well as cardiovascular and neurological diseases. Depending on the isoform, Cx have been shown either to promote or suppress the development of atherosclerosis, a progressive inflammatory disease affecting large and medium-sized arteries. Cx might contribute to the progression of the disease by enhancing endothelial dysfunction, monocyte recruitment, vascular smooth muscle cell (VSMC) activation, or by inhibiting VSMC autophagy. Inhibition or modulation of the expression of specific isoforms could suppress atherosclerotic plaque formation and diminish pro-inflammatory conditions. A better understanding of the complexity of atherosclerosis pathophysiology linked with Cx could result in developing novel therapeutic strategies. This review aims to present the role of Cx in the pathogenesis of atherosclerosis and discusses whether they can become novel therapeutic targets.
Collapse
|