1
|
Jo JY, Kim JW, Noh ES, Kim YO, Gong SP, Kong HJ, Choi JH. Establishment and Characterization of OFT and OFO Cell Lines from Olive Flounder ( Paralichthys olivaceus) for Use as Feeder Cells. BIOLOGY 2025; 14:229. [PMID: 40136486 PMCID: PMC11939788 DOI: 10.3390/biology14030229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025]
Abstract
Olive flounder (Paralichthys olivaceus) is a commercially important fish species in Japan, China, and the Republic of Korea. Despite numerous attempts to improve productivity, there have been no studies of in vitro germline stem cell (GSC) culture in this species. Here, olive flounder testicular and ovarian cell lines (OFT and OFO, respectively) were established and characterized. RT-PCR demonstrated that OFT and OFO expressed several gonadal somatic cell markers, including wt1 and fgf2, but lacked expression of germ cell markers, such as vasa, nanos2, and scp3. In addition, SNP analysis revealed that OFT originated from XY male P. olivaceus and OFO originated from XX female P. olivaceus. These results suggest that OFT was composed of Sertoli cells and OFO was composed of granulosa cells and theca cells. Finally, coculture of OFT or OFO with enriched male P. olivaceus GSCs isolated from the top 20% and 20-30% Percoll density gradient layers showed that GSCs were attached on both cell lines. In conclusion, we established P. olivaceus testicular and ovarian cell lines, which were expected to use for development of an in vitro GSC culture system.
Collapse
Affiliation(s)
- Ja Young Jo
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea; (J.Y.J.); (J.-W.K.); (E.S.N.); (Y.-O.K.); (H.J.K.)
| | - Ju-Won Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea; (J.Y.J.); (J.-W.K.); (E.S.N.); (Y.-O.K.); (H.J.K.)
| | - Eun Soo Noh
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea; (J.Y.J.); (J.-W.K.); (E.S.N.); (Y.-O.K.); (H.J.K.)
| | - Yong-Ok Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea; (J.Y.J.); (J.-W.K.); (E.S.N.); (Y.-O.K.); (H.J.K.)
| | - Seung Pyo Gong
- Major in Aquaculture and Applied Life Science, Division of Fisheries Life Science, Pukyong National University, Busan 48513, Republic of Korea;
| | - Hee Jeong Kong
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea; (J.Y.J.); (J.-W.K.); (E.S.N.); (Y.-O.K.); (H.J.K.)
| | - Jae Hoon Choi
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea; (J.Y.J.); (J.-W.K.); (E.S.N.); (Y.-O.K.); (H.J.K.)
| |
Collapse
|
2
|
Tan L, Liu Q, He Y, Zhang J, Hou J, Ren Y, Ma W, Wang Q, Shao C. Establishment and Characterization of a Spermatogonial Stem Cell Line from Tiger Puffer Fish ( Takifugu rubripes). Animals (Basel) 2023; 13:2959. [PMID: 37760359 PMCID: PMC10525247 DOI: 10.3390/ani13182959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 09/29/2023] Open
Abstract
Tiger puffer fish (Takifugu rubripes) has become the main fish species cultured in China since the last century because of its high economic value. Male and female tiger puffer fish need 2 and 3 years each to reach sexual maturity, which limits the development of breeding research for this species. In recent years, in vitro culture of fish spermatogonial stem cells (SSCs) have shown potential in aquaculture. In the present study, we established a spermatogenic stem cell line from T. rubripes (TrSSCs). TrSSCs were characterized by polygonal morphology, predominantly retained 44 chromosomes, and grew rapidly at 26 °C and in L-15. TrSSCs were still able to grow stably after more than one year of in vitro culture. TrSSCs showed positive alkaline phosphatase staining. TrSSCs expressed germ cell-associated genes, including dnd, ddx4, piwil, gfra1b, sox2, myca, nanog, ly75, and dazl, as determined by semiquantitative assays, and almost all cells were found to express the germ cell genes ddx4 and gfra1b in a fluorescence in situ hybridization assay. In vitro, induction experiments demonstrated the TrSSCs possessed the ability to differentiate into other types of cells. Our research has enriched the fish spermatogonial stem cell resource bank, which will provide an efficient research model for sex determination and sex control breeding in fish, establishing a foundation for subsequent breeding research.
Collapse
Affiliation(s)
- Leilei Tan
- Jiangsu Key Laboratory of Marine Biological Resources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222000, China;
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.L.); (Y.H.); (J.Z.); (W.M.)
| | - Qian Liu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.L.); (Y.H.); (J.Z.); (W.M.)
| | - Yangbin He
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.L.); (Y.H.); (J.Z.); (W.M.)
| | - Jingjing Zhang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.L.); (Y.H.); (J.Z.); (W.M.)
| | - Jilun Hou
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; (J.H.); (Y.R.)
| | - Yuqin Ren
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; (J.H.); (Y.R.)
| | - Wenxiu Ma
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.L.); (Y.H.); (J.Z.); (W.M.)
| | - Qian Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.L.); (Y.H.); (J.Z.); (W.M.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Changwei Shao
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.L.); (Y.H.); (J.Z.); (W.M.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
3
|
Gu K, Zhang Y, Zhong Y, Kan Y, Jawad M, Gui L, Ren M, Xu G, Liu D, Li M. Establishment of a Coilia nasus Spermatogonial Stem Cell Line Capable of Spermatogenesis In Vitro. BIOLOGY 2023; 12:1175. [PMID: 37759575 PMCID: PMC10526059 DOI: 10.3390/biology12091175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023]
Abstract
The process by which spermatogonial stem cells (SSCs) continuously go through mitosis, meiosis, and differentiation to produce gametes that transmit genetic information is known as spermatogenesis. Recapitulation of spermatogenesis in vitro is hindered by the challenge of collecting spermatogonial stem cells under long-term in vitro culture conditions. Coilia nasus is a commercially valuable anadromous migrant fish found in the Yangtze River in China. In the past few decades, exploitation and a deteriorating ecological environment have nearly caused the extinction of C. nasus's natural resources. In the present study, we established a stable spermatogonial stem cell line (CnSSC) from the gonadal tissue of the endangered species C. nasus. The cell line continued to proliferate and maintain stable cell morphology, a normal diploid karyotype, and gene expression patterns after more than one year of cell culture (>80 passages). Additionally, CnSSC cells could successfully differentiate into sperm cells through a coculture system. Therefore, the establishment of endangered species spermatogonial stem cell lines is a model for studying spermatogenesis in vitro and a feasible way to preserve germplasm resources.
Collapse
Affiliation(s)
- Kaiyan Gu
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (K.G.); (Y.Z.); (Y.Z.); (Y.K.); (M.J.); (L.G.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Ya Zhang
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (K.G.); (Y.Z.); (Y.Z.); (Y.K.); (M.J.); (L.G.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Ying Zhong
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (K.G.); (Y.Z.); (Y.Z.); (Y.K.); (M.J.); (L.G.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Microecological Resources and Utilization in Breeding Industry, Ministry of Agriculture and Rural Affairs, Guangzhou 511400, China
| | - Yuting Kan
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (K.G.); (Y.Z.); (Y.Z.); (Y.K.); (M.J.); (L.G.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Muhammad Jawad
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (K.G.); (Y.Z.); (Y.Z.); (Y.K.); (M.J.); (L.G.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Lang Gui
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (K.G.); (Y.Z.); (Y.Z.); (Y.K.); (M.J.); (L.G.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Mingchun Ren
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (M.R.); (G.X.)
| | - Gangchun Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (M.R.); (G.X.)
| | - Dong Liu
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (K.G.); (Y.Z.); (Y.Z.); (Y.K.); (M.J.); (L.G.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Mingyou Li
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (K.G.); (Y.Z.); (Y.Z.); (Y.K.); (M.J.); (L.G.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
4
|
Zhang K, Zhou Y, Song W, Jiang L, Yan X. Genome-Wide RADseq Reveals Genetic Differentiation of Wild and Cultured Populations of Large Yellow Croaker. Genes (Basel) 2023; 14:1508. [PMID: 37510412 PMCID: PMC10379082 DOI: 10.3390/genes14071508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Larimichthys crocea (also known as the large yellow croaker) is one of the most economically important marine fishes in China, and research on the ecology and genetics of this species is of immense significance. In this study, we performed restriction site-associated DNA sequencing (RAD-seq) of 54 individuals collected from four sites in China to analyze the genetic structure and diversity of large yellow croaker at the genome level. It revealed that the large yellow croaker populations in the Ningde and Zhoushan coastal waters can be clearly distinguished. Different genetic diversity indices were used to analyze the genetic diversity of the large yellow croaker, which showed that there was a differentiation trend between the wild and farmed populations in Ningde. Moreover, we identified genetically differentiated genomic regions between the populations. GO gene enrichment analysis identified genes that are related to fatty acid metabolism and growth. These findings enhance our understanding of genetic differentiation and adaptation to different living environments, providing a theoretical basis for the preservation and restoration of the genetic resources of the large yellow croaker.
Collapse
Affiliation(s)
- Kaifen Zhang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yongdong Zhou
- Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Weihua Song
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Lihua Jiang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xiaojun Yan
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
5
|
Establishment of a Spermatogonial Stem Cell Line with Potential of Meiosis in a Hermaphroditic Fish, Epinephelus coioides. Cells 2022; 11:cells11182868. [PMID: 36139441 PMCID: PMC9496998 DOI: 10.3390/cells11182868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are unique adult stem cells capable of self-renewal and differentiation into sperm. Grouper is a protogynous hermaphroditic fish farmed widely in the tropical and subtropical seas. In this study, we established an SSC line derived from adult testis of orange-spotted grouper, Epinephelus coioides. In the presence of basic fibroblast growth factor (bFGF) and leukemia inhibitory factor (LIF), the cells could be maintained with proliferation and self-renewal over 20 months and 120 passages under in vitro culture conditions. The cells exhibited strong alkaline phosphatase activity and the characteristics of SSCs with the expression of germ cell markers, including Vasa, Dazl, and Plzf, as well as the stem cell markers Nanog, Oct4, and Ssea1. Furthermore, the cultured cells could be induced by 11-ketotestosterone treatment to highly express the meiotic markers Rec8, Sycp3, and Dmc1, and produce some spherical cells, and even sperm-like cells with a tail. The findings of this study suggested that the cultured grouper SSC line would serve as an excellent tool to study the molecular mechanisms behind SSCs self-renewal and differentiation, meiosis during spermatogenesis, and sex reversal in hermaphroditic vertebrates. Moreover, this SSC line has great application value in grouper fish aquaculture, such as germ cell transplantation, genetic manipulation, and disease research.
Collapse
|
6
|
Chen X, Kan Y, Zhong Y, Jawad M, Wei W, Gu K, Gui L, Li M. Generation of a Normal Long-Term-Cultured Chinese Hook Snout Carp Spermatogonial Stem Cell Line Capable of Sperm Production In Vitro. BIOLOGY 2022; 11:1069. [PMID: 36101449 PMCID: PMC9312933 DOI: 10.3390/biology11071069] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/20/2022]
Abstract
Opsariichthys bidens belongs to the family Cyprinidae and is a small freshwater economic fish widely distributed in China. In recent years, the natural resources of O. bidens have been drastically reduced due to overfishing and the destruction of the water environment. The in vitro culture and long-term preservation of germ stem cells are the key technologies to keep genetic resources from degeneration. However, except for the establishment of the first long-term cultured medaka spermatogonia cell line (SSC) capable of producing sperm in vitro in 2004, no other long-term cultured SSC line has been found in other fish species. In this study, we successfully established another long-term-cultured spermatogonial stem cell line from Opsariichthys bidens (ObSSC). After more than 2 years of culture, ObSSC had a diploid karyotype and stable growth, with the typical gene expression patterns of SSC. Under in vitro culture, ObSSC could be induced to differentiate into sperm and other different types of somatic cells. In vivo, ObSSC could differentiate into different cells of three germ layers upon being transplanted into zebrafish embryos. Our research helps to explore the potential and regulation mechanism of fish SSC differentiation and spermatogenesis in vitro, provides a new way for solving the problem of fish genetic resource degradation and lays a foundation for further research on fish germ cell transplantation.
Collapse
Affiliation(s)
- Xiao Chen
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (X.C.); (Y.K.); (Y.Z.); (M.J.); (W.W.); (K.G.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yuting Kan
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (X.C.); (Y.K.); (Y.Z.); (M.J.); (W.W.); (K.G.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Ying Zhong
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (X.C.); (Y.K.); (Y.Z.); (M.J.); (W.W.); (K.G.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Microecological Resources and Utilization in Breeding Industry, Ministry of Agriculture and Rural Affairs, Guangzhou 511400, China
| | - Muhammad Jawad
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (X.C.); (Y.K.); (Y.Z.); (M.J.); (W.W.); (K.G.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Wenbo Wei
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (X.C.); (Y.K.); (Y.Z.); (M.J.); (W.W.); (K.G.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Kaiyan Gu
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (X.C.); (Y.K.); (Y.Z.); (M.J.); (W.W.); (K.G.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Lang Gui
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (X.C.); (Y.K.); (Y.Z.); (M.J.); (W.W.); (K.G.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Mingyou Li
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (X.C.); (Y.K.); (Y.Z.); (M.J.); (W.W.); (K.G.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|