1
|
Woo J, Ji H, Jeon K, Kim H, Yoon S, Hwang Y, Cho E, Park D, Jung E. Anti-skin aging effects of Gosori liquor lees extract by regulating interactions between senescent fibroblasts and adipose-derived stem cells. Int J Cosmet Sci 2025. [PMID: 39838700 DOI: 10.1111/ics.13046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 12/13/2024] [Accepted: 12/23/2024] [Indexed: 01/23/2025]
Abstract
When cellular ageing is accelerated by various extrinsic/endogenous stimuli, regenerative function deteriorates, and enriched secretomes, such as the senescence-associated secretory phenotype (SASP), contribute to chronic inflammation and cause matrix degeneration. SASPs from senescent fibroblasts exacerbate cellular senescence via autocrine signalling and also accelerate skin ageing through the induction of neighbouring cell senescence via paracrine signalling. The interaction between dermis fibroblasts and their neighbours, adipose-derived stem cells (ADSCs) in the hypodermis, which lies deep in the dermis, is a potential target for skin ageing. In this study, we observed that an extract of the lees of Gosori liquor (GLE), a traditional Korean liquor made by fermenting millet and rice, suppressed the senescence of fibroblasts, including SASP production, in a replicative senescent model. We further examined whether the anti-ageing effects of GLE on fibroblasts affected the cellular senescence of their surrounding cells, ADSCs. The results showed that senescence factors in ADSCs were suppressed by culture medium from senescent fibroblasts (SF-CM) treated with GLE compared to the SF-CM-only treated group. Furthermore, the regenerative ability of ADSCs was promoted in the GLE-treated SF-CM group. ADSC migration was stimulated by upregulating the levels of α-smooth muscle actin, collagen type I alpha 2, and vascular endothelial growth factor expression through the PI3K/AKT pathway. Those results indicate that GLE can exert regenerative ability by regulating fibroblasts, and adipocyte interactions, improving cellular senescence. We conducted a clinical trial of subjects over 45 years of age to confirm the anti-ageing effects of GLE in vivo and observed changes in ageing parameters, such as skin wrinkles and volume on the face (IRB No. DM-IRB-2023-809-01-T1). The results showed that GLE-containing cream was more effective in improving skin wrinkles, elasticity, density, thickness, and volume around sunken eyes after 4 weeks of use than placebo. In conclusion, GLE plays an important role in inhibiting the ageing transition to ADSCs by inhibiting the senescence of fibroblasts and can be a promising anti-ageing strategy.
Collapse
Affiliation(s)
- Jieun Woo
- BioSpectrum Life Science Institute, A1805, U-TOWER, 767, Yongin, Republic of Korea
| | - Hyanggi Ji
- BioSpectrum Life Science Institute, A1805, U-TOWER, 767, Yongin, Republic of Korea
| | - Kyungeun Jeon
- BioSpectrum Life Science Institute, A1805, U-TOWER, 767, Yongin, Republic of Korea
| | - Hongbae Kim
- BioSpectrum Life Science Institute, A1805, U-TOWER, 767, Yongin, Republic of Korea
| | - Sohyun Yoon
- Dermacle Inc., A1606, U-TOWER, 767, Yongin, Republic of Korea
| | - Yunhee Hwang
- Dermacle Inc., A1606, U-TOWER, 767, Yongin, Republic of Korea
| | - Eunae Cho
- BioSpectrum Life Science Institute, A1805, U-TOWER, 767, Yongin, Republic of Korea
| | - Deokhoon Park
- BioSpectrum Life Science Institute, A1805, U-TOWER, 767, Yongin, Republic of Korea
| | - Eunsun Jung
- BioSpectrum Life Science Institute, A1805, U-TOWER, 767, Yongin, Republic of Korea
| |
Collapse
|
2
|
Zhang Y, Huang G, Zhang Z, Xu Y, Ren J, Sun W, Chen J, He R. Protective effects of a novel FS-Collagen hydrolysates against UV- and d-galactose-induced skin aging. Food Sci Biotechnol 2025; 34:257-267. [PMID: 39758722 PMCID: PMC11695533 DOI: 10.1007/s10068-024-01660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/19/2024] [Accepted: 07/11/2024] [Indexed: 01/07/2025] Open
Abstract
UNLABELLED The oral consumption of collagen hydrolysates derived from various animal tissues has been demonstrated to have beneficial effects on skin health, particularly in combating the signs of aging. Here in this study, a novel animal-derived FS-Collagen hydrolysates were developed and its effects against skin aging was analyzed in a new mice skin aging model established through a combination of UV irradiation and d-galactose induction. 8 Weeks of oral FS-Collagen administration demonstrated significant protective effects against skin aging in mice, evidenced by the preservation of the skin's macroscopic appearance, the restoration of skin composition and structure, an enhancement in antioxidant capacity and the inhibition of inflammation. Additionally, FS-Collagen safeguards skin barrier integrity and cellular connections, particularly by maintaining the expression levels of Dsg1 and Jam-A. In summary, the FS-Collagen exhibits positive effects in countering skin aging and holds promise as an alternative functional nutrition supplement for anti-skin aging care. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10068-024-01660-7.
Collapse
Affiliation(s)
- Yihan Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, China
| | - Guangye Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, China
| | - Zhen Zhang
- BYHEALTH Institute of Nutrition & Health, Kexue Avenue Central, Huangpu District, Guangzhou, China
| | - Yongzhao Xu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, China
| | - Jiaoyan Ren
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, China
| | - Wei Sun
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, China
| | - Jianwen Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, China
| | - Ruikun He
- BYHEALTH Institute of Nutrition & Health, Kexue Avenue Central, Huangpu District, Guangzhou, China
| |
Collapse
|
3
|
Salminen A, Kaarniranta K, Kauppinen A. Tissue fibroblasts are versatile immune regulators: An evaluation of their impact on the aging process. Ageing Res Rev 2024; 97:102296. [PMID: 38588867 DOI: 10.1016/j.arr.2024.102296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Fibroblasts are abundant stromal cells which not only control the integrity of extracellular matrix (ECM) but also act as immune regulators. It is known that the structural cells within tissues can establish an organ-specific immunity expressing many immune-related genes and closely interact with immune cells. In fact, fibroblasts can modify their immune properties to display both pro-inflammatory and immunosuppressive activities in a context-dependent manner. After acute insults, fibroblasts promote tissue inflammation although they concurrently recruit immunosuppressive cells to enhance the resolution of inflammation. In chronic pathological states, tissue fibroblasts, especially senescent fibroblasts, can display many pro-inflammatory and immunosuppressive properties and stimulate the activities of different immunosuppressive cells. In return, immunosuppressive cells, such as M2 macrophages and myeloid-derived suppressor cells (MDSC), evoke an excessive conversion of fibroblasts into myofibroblasts, thus aggravating the severity of tissue fibrosis. Single-cell transcriptome studies on fibroblasts isolated from aged tissues have confirmed that tissue fibroblasts express many genes coding for cytokines, chemokines, and complement factors, whereas they lose some fibrogenic properties. The versatile immune properties of fibroblasts and their close cooperation with immune cells indicate that tissue fibroblasts have a crucial role in the aging process and age-related diseases.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, KYS FI-70029, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland
| |
Collapse
|
4
|
Rasbach L, Caliskan A, Saderi F, Dandekar T, Breitenbach T. An orchestra of machine learning methods reveals landmarks in single-cell data exemplified with aging fibroblasts. PLoS One 2024; 19:e0302045. [PMID: 38630692 PMCID: PMC11023401 DOI: 10.1371/journal.pone.0302045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
In this work, a Python framework for characteristic feature extraction is developed and applied to gene expression data of human fibroblasts. Unlabeled feature selection objectively determines groups and minimal gene sets separating groups. ML explainability methods transform the features correlating with phenotypic differences into causal reasoning, supported by further pipeline and visualization tools, allowing user knowledge to boost causal reasoning. The purpose of the framework is to identify characteristic features that are causally related to phenotypic differences of single cells. The pipeline consists of several data science methods enriched with purposeful visualization of the intermediate results in order to check them systematically and infuse the domain knowledge about the investigated process. A specific focus is to extract a small but meaningful set of genes to facilitate causal reasoning for the phenotypic differences. One application could be drug target identification. For this purpose, the framework follows different steps: feature reduction (PFA), low dimensional embedding (UMAP), clustering ((H)DBSCAN), feature correlation (chi-square, mutual information), ML validation and explainability (SHAP, tree explainer). The pipeline is validated by identifying and correctly separating signature genes associated with aging in fibroblasts from single-cell gene expression measurements: PLK3, polo-like protein kinase 3; CCDC88A, Coiled-Coil Domain Containing 88A; STAT3, signal transducer and activator of transcription-3; ZNF7, Zinc Finger Protein 7; SLC24A2, solute carrier family 24 member 2 and lncRNA RP11-372K14.2. The code for the preprocessing step can be found in the GitHub repository https://github.com/AC-PHD/NoLabelPFA, along with the characteristic feature extraction https://github.com/LauritzR/characteristic-feature-extraction.
Collapse
Affiliation(s)
- Lauritz Rasbach
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Aylin Caliskan
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Fatemeh Saderi
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Tim Breitenbach
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Toledano-Macías E, Martínez-Pascual MA, Hernández-Bule ML. Electric currents of 448 kHz upregulate anti-senescence pathways in human dermal fibroblasts. J Cosmet Dermatol 2024; 23:687-700. [PMID: 37945550 DOI: 10.1111/jocd.16019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/07/2023] [Accepted: 09/22/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Currently, finding new therapeutic strategies that reduce skin aging is a challenge for dermatologists and aesthetic doctors. In recent years, physical therapies have been included in the options for antiaging treatments; however, the biological bases of such treatments have scarcely been studied. One of these physical therapies is capacitive-resistive electric transfer (CRET) therapy. Previous studies have shown that subthermal treatment with CRET promotes the proliferation and migration of various cell types involved in skin regeneration, such as human ADSC (stem cells), fibroblasts, or keratinocytes. OBJECTIVE This study investigates the effects of in vitro treatment with CRET-Std (standard, non-modulated signal) or CRET-Mod (modulated signal) on cell proliferation and migration, markers of aging, and extracellular matrix production. METHODS Three types of human dermal fibroblasts were used: neonatal fibroblasts (HFn), replicative senescent fibroblasts (HFs), and adult fibroblasts (HFa). The effects of electric stimulation on cell proliferation and migration were studied through XTT and wound closure assays, respectively. The expression of the aging marker β-galactosidase was assessed using a colorimetric assay, whereas immunoblot, immunofluorescence, and ELISAs were carried out to analyze the expression levels of migration, aging, and extracellular matrix proteins. RESULTS The treatment with CRET-Std increased HFn and HFa proliferation, as well as migration in the three types of fibroblasts studied compared to those of the controls. Conversely, CRET-Mod did not modify either of these two processes with respect to the controls. Additionally, CRET-Std also reduced the cellular senescence markers β-gal, vimentin, p53, and p21 in all three types of human skin fibroblasts. In addition, the application of CRET-Std also induced fibronectin production in HFn and was able to stimulate ECM neocollagenesis. CONCLUSION CRET treatment improves a number of functions related to migration and proliferation, and it reduces age-related cellular changes in human dermal fibroblasts. Therefore, the use of this CRET therapy to reduce the signs of dermal aging and to promote tissue regeneration could be of interest.
Collapse
Affiliation(s)
- Elena Toledano-Macías
- Bioelectromagnetic Laboratory, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | - María Luisa Hernández-Bule
- Bioelectromagnetic Laboratory, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| |
Collapse
|
6
|
Itai E, Atsugi T, Inomata K, Yamashita M, Kaji K, Nanba D, Naru E. Single-cell analysis of human dermal fibroblasts isolated from a single male donor over 35 years. Exp Dermatol 2023; 32:1982-1995. [PMID: 37727050 DOI: 10.1111/exd.14929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/21/2023]
Abstract
The aim of this study is to examine the effects of ageing on dermal fibroblast heterogeneity based on samples obtained from the same donor. We used a dermal fibroblast lineage (named ASF-4 cell lines) isolated from the inner side of the upper arm of a healthy male donor over a 35-year period, beginning at 36 years of age. Because clonal analysis of ASF-4 cell lines demonstrated a donor age-dependent loss of proliferative capacity and acquisition of senescent traits at the single-cell level, cultured cells frozen at passage 10 at ages 36 and 72 years were subjected to single-cell RNA sequencing. Transcriptome analysis revealed an increase in senescent fibroblasts and downregulation of genes associated with extracellular matrix remodelling with ageing. In addition, two putative differentiation pathways, with one endpoint consisting of senescent fibroblasts and the other without, were speculated using a pseudo-time analysis. Knockdown of the characteristic gene of the non-senescent fibroblast cluster endpoint, EFEMP2, accelerated cellular senescence. This was also confirmed in two other normal human dermal fibroblast cell lines. The detection of a common cellular senescence-related gene from single-donor analysis is notable. This study provides new insights into the behaviour of dermal fibroblasts during skin ageing.
Collapse
Affiliation(s)
- Eriko Itai
- Research Laboratories, KOSÉ Corporation, Tokyo, Japan
| | - Toru Atsugi
- Research Laboratories, KOSÉ Corporation, Tokyo, Japan
| | - Ken Inomata
- Research Laboratories, KOSÉ Corporation, Tokyo, Japan
| | | | - Kazuhiko Kaji
- Research Laboratories, KOSÉ Corporation, Tokyo, Japan
| | - Daisuke Nanba
- Division of Aging and Regeneration, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Eiji Naru
- Research Laboratories, KOSÉ Corporation, Tokyo, Japan
| |
Collapse
|
7
|
Wattanapitayakul SK, Jarisarapurin W, Kunchana K, Setthawong V, Chularojmontri L. Unripe Carica papaya Fresh Fruit Extract Protects against Methylglyoxal-Mediated Aging in Human Dermal Skin Fibroblasts. Prev Nutr Food Sci 2023; 28:235-245. [PMID: 37842248 PMCID: PMC10567595 DOI: 10.3746/pnf.2023.28.3.235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/02/2023] [Accepted: 05/22/2023] [Indexed: 10/17/2023] Open
Abstract
The glycolytic metabolite methylglyoxal (MGO) initiates the formation of advanced glycation end products and oxidative stress, leading to cellular senescence and skin aging. This study focuses on the anti-aging properties of unripe Carica papaya L. (UCP) fresh fruit extract on MGO-induced human dermal fibroblast senescence. We pretreated human foreskin fibroblasts with UCP before incubating them with MGO (400 μM) for 72 h. We used the glycation inhibitor aminoguanidine hydrochloride (AG) as the positive control. Senescent fibroblasts were detected using senescence-associated beta-galactosidase activity and collagen type I expression (COL1A1). We investigated the changes in the Akt, JNK/p38 mitogen-activated protein kinase (MAPK), c-Jun, and nuclear factor kappa B (NF-κB) signaling pathways using Western blotting. UCP significantly suppressed MGO-induced senescent fibroblasts (from 20.90±2.00% to 11.78±2.04%) when compared with the baseline level at 7.10±0.90% (P<0.05). While COL1A1 was diminished by 43.35±1.56% (P<0.001) in the MGO-treated fibroblasts, UCP and AG could recover COL1A1 to 63.22±4.78% and 64.39±3.34%, respectively. MGO triggered overactivation of Akt, JNK/p38 MAPK, c-Jun, and NF-κB by 2.10±0.09, 8.10±0.37, 6.60±0.29, 2.18±0.23, and 3.74±0.37 folds, respectively. UCP and AG significantly abolished these changes. Consistently, MGO increased matrix metalloproteinase-1 (MMP-1) levels by 2.58±0.04 folds, which was significantly suppressed by UCP and AG pretreatment to 1.87±0.11 and 1.69±0.07 folds, respectively. In summary, UCP controlled MGO-induced fibroblast senescence by suppressing the JNK/c-Jun/MMP and p38/NF-κB/COL1A1 pathways, similar to the action of the glycation inhibitor AG. Therefore, UCP can be considered a functional fruit for preventing and delaying skin aging.
Collapse
Affiliation(s)
| | - Wattanased Jarisarapurin
- Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani 12120, Thailand
| | - Khwandow Kunchana
- Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Vasun Setthawong
- Department of Surgery, Lerdsin Hospital, Department of Medical Services, Ministry of Public Health, Bangkok 10500, Thailand
- Department of Surgery, College of Medicine, Rangsit University, Pathum Thani 12000, Thailand
| | - Linda Chularojmontri
- Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathum Thani 12121, Thailand
| |
Collapse
|
8
|
Zheng X, Deng W, Wang X, Wu Z, Li C, Zhang X. Ameliorative effect of black tea extract on the skin of D-galactose-induced aging mice. Front Nutr 2023; 10:1275199. [PMID: 37781120 PMCID: PMC10540639 DOI: 10.3389/fnut.2023.1275199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Aging is a universal and irreversible process, and the skin is an important feature that reflects the aging of the organism. Skin aging has been a focus of attention in recent years because it leads to changes in an individual's external features and the loss of many important biological functions. This experiment investigated the improvement effect of black tea extract (BTE) on the skin of aging mice under D-galactose induction. After 6 weeks of administration, the changes in skin bio-chemical indices and tissue structure were compared with the blank and positive control groups. It was observed that BTE increased water and hyaluronic acid (HA) content, decreased malondialdehyde (MDA) content, enhanced superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities in the skin of aging mice, and improved the structure of aging damaged skin tissues and increased the content of total collagen. The experimental results showed that BTE can play a significant anti-aging effect on the skin, which can be used as a functional food for aging inhibition.
Collapse
Affiliation(s)
- Xiaojie Zheng
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science and Technology (Wenzhou Academy of Agricultural Sciences), Wenzhou, Zhejiang, China
| | - Wenbin Deng
- Zhejiang Tiefengtang Health Technology Co., Ltd., Wenzhou, China
| | - Xinzhou Wang
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Chong Li
- Graduate School, Xuzhou Medical University, Xuzhou, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| |
Collapse
|
9
|
da Cruz IBM, de Afonso Bonotto NC, Turra BO, Teixeira CF, Azzolin VF, Ribeiro EAM, Piccoli JDCE, Barbisan F. Rotenone-exposure as cytofunctional aging model of human dermal fibroblast prior replicative senescence. Toxicol In Vitro 2023:105637. [PMID: 37394047 DOI: 10.1016/j.tiv.2023.105637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Rotenone (Ro), causes superoxide imbalance by inhibiting complex I of the mitochondrial electron transport chain, being able to serve as a model for functional skin aging by inducing cytofunctional changes in dermal fibroblasts prior to proliferative senescence. To test this hypothesis, we conducted an initial protocol to select a concentration of Ro (0.5, 1, 1.5, 2, 2.5, and 3 μM) that would induce the highest levels of the aging marker beta-galactosidase (β-gal) in human dermal HFF-1 fibroblasts after 72 h of culture, as well as a moderate increase in apoptosis and partial G1 arrestment. We evaluated whether the selected concentration (1 μM) differentially modulated oxidative and cytofunctional markers of fibroblasts. Ro 1.0 μM increased β-gal levels and apoptosis frequency, decreased the frequency of S/G2 cells, induced higher levels of oxidative markers, and presented a genotoxic effect. Fibroblasts exposed to Ro showed lower mitochondrial activity, extracellular collagen deposition, and fewer fibroblast cytoplasmic connections than controls. Ro triggered overexpression of the gene associated with aging (MMP-1), downregulation genes of collagen production (COL1A, FGF-2), and cellular growth/regeneration (FGF-7). The 1 μM concentration of Ro could serve as an experimental model for functional aging fibroblasts prior to replicative senescence. It could be used to identify causal aging mechanisms and strategies to delay skin aging events.
Collapse
Affiliation(s)
- Ivana Beatrice Mânica da Cruz
- Postgraduate Program of Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil; Postgraduate Program of em Gerontology, Federal University of Santa Maria, Santa Maria, RS, Brazil; Santa Maria, RS, Brazil d Open University of the Third Age, State University of Amazonas, Manaus, AM, Brazil
| | - Nathália Cardoso de Afonso Bonotto
- Postgraduate Program of Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil; Postgraduate Program of em Gerontology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Bárbara Osmarin Turra
- Postgraduate Program of Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil; Santa Maria, RS, Brazil d Open University of the Third Age, State University of Amazonas, Manaus, AM, Brazil
| | - Cibele Ferreira Teixeira
- Postgraduate Program of Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Verônica Farina Azzolin
- Postgraduate Program of em Gerontology, Federal University of Santa Maria, Santa Maria, RS, Brazil; Santa Maria, RS, Brazil d Open University of the Third Age, State University of Amazonas, Manaus, AM, Brazil
| | - Ednea Aguiar Maia Ribeiro
- Santa Maria, RS, Brazil d Open University of the Third Age, State University of Amazonas, Manaus, AM, Brazil
| | | | - Fernanda Barbisan
- Postgraduate Program of Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil; Postgraduate Program of em Gerontology, Federal University of Santa Maria, Santa Maria, RS, Brazil; Santa Maria, RS, Brazil d Open University of the Third Age, State University of Amazonas, Manaus, AM, Brazil.
| |
Collapse
|
10
|
Zorina A, Zorin V, Isaev A, Kudlay D, Vasileva M, Kopnin P. Dermal Fibroblasts as the Main Target for Skin Anti-Age Correction Using a Combination of Regenerative Medicine Methods. Curr Issues Mol Biol 2023; 45:3829-3847. [PMID: 37232716 DOI: 10.3390/cimb45050247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
This article includes the data from current studies regarding the pathophysiological mechanisms of skin aging and the regenerative processes occurring in the epidermis and dermis at the molecular and cellular level, mainly, the key role of dermal fibroblasts in skin regeneration. Analyzing these data, the authors proposed the concept of skin anti-age therapy that is based on the correction of age-related skin changes by stimulating regenerative processes at the molecular and cellular level. The main target of the skin anti-age therapy is dermal fibroblasts (DFs). A variant of the cosmetological anti-age program using the combination of laser and cellular methods of regenerative medicine is presented in the paper. The program includes three stages of implementation and defines the tasks and methods of each stage. Thus, laser technologies allow one to remodel the collagen matrix and create favorable conditions for DFs functions, whereas the cultivated autologous dermal fibroblasts replenish the pool of mature DFs decreasing with age and are responsible for the synthesis of components of the dermal extracellular matrix. Finally, the use of autological platelet-rich plasma (PRP) enables to maintenance of the achieved results by stimulating DF function. It has been shown that growth factors/cytokines contained in α-granules of platelets injected into the skin bind to the corresponding transmembrane receptors on the surface of DFs and stimulate their synthetic activity. Thus, the consecutive, step-by-step application of the described methods of regenerative medicine amplifies the effect on the molecular and cellular aging processes and thereby allows one to optimize and prolong the clinical results of skin rejuvenation.
Collapse
Affiliation(s)
- Alla Zorina
- The Human Stem Cells Institute, Moscow 119333, Russia
- SKINCELL LLC, Moscow 119333, Russia
| | - Vadim Zorin
- The Human Stem Cells Institute, Moscow 119333, Russia
- SKINCELL LLC, Moscow 119333, Russia
| | - Artur Isaev
- The Human Stem Cells Institute, Moscow 119333, Russia
| | - Dmitry Kudlay
- Department of Pharmacology, The I.M. Sechenov First Moscow State Medical University (The Sechenov University), Moscow 119991, Russia
| | - Maria Vasileva
- The N.N. Blokhin National Medical Research Oncology Center, The Ministry of Health of Russia, Moscow 115478, Russia
| | - Pavel Kopnin
- The N.N. Blokhin National Medical Research Oncology Center, The Ministry of Health of Russia, Moscow 115478, Russia
| |
Collapse
|
11
|
Breugnot J, Rouaud‐Tinguely P, Gilardeau S, Rondeau D, Bordes S, Aymard E, Closs B. Utilizing deep learning for dermal matrix quality assessment on in vivo line-field confocal optical coherence tomography images. Skin Res Technol 2023; 29:e13221. [PMID: 36366860 PMCID: PMC9838780 DOI: 10.1111/srt.13221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/08/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Line-field confocal optical coherence tomography (LC-OCT) is an imaging technique providing non-invasive "optical biopsies" with an isotropic spatial resolution of ∼1 μm and deep penetration until the dermis. Analysis of obtained images is classically performed by experts, thus requiring long and fastidious training and giving operator-dependent results. In this study, the objective was to develop a new automated method to score the quality of the dermal matrix precisely, quickly, and directly from in vivo LC-OCT images. Once validated, this new automated method was applied to assess photo-aging-related changes in the quality of the dermal matrix. MATERIALS AND METHODS LC-OCT measurements were conducted on the face of 57 healthy Caucasian volunteers. The quality of the dermal matrix was scored by experts trained to evaluate the fibers' state according to four grades. In parallel, these images were used to develop the deep learning model by adapting a MobileNetv3-Small architecture. Once validated, this model was applied to the study of dermal matrix changes on a panel of 36 healthy Caucasian females, divided into three groups according to their age and photo-exposition. RESULTS The deep learning model was trained and tested on a set of 15 993 images. Calculated on the test data set, the accuracy score was 0.83. As expected, when applied to different volunteer groups, the model shows greater and deeper alteration of the dermal matrix for old and photoexposed subjects. CONCLUSIONS In conclusion, we have developed a new method that automatically scores the quality of the dermal matrix on in vivo LC-OCT images. This accurate model could be used for further investigations, both in the dermatological and cosmetic fields.
Collapse
|
12
|
Glutaminase inhibitors rejuvenate human skin via clearance of senescent cells: a study using a mouse/human chimeric model. Aging (Albany NY) 2022; 14:8914-8926. [PMID: 36435512 PMCID: PMC9740363 DOI: 10.18632/aging.204391] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022]
Abstract
Skin aging caused by various endogenous and exogenous factors results in structural and functional changes to skin components. However, the role of senescent cells in skin aging has not been clarified. To elucidate the function of senescent cells in skin aging, we evaluated the effects of the glutaminase inhibitor BPTES (bis-2-(5-phenylacetamido-1, 3, 4-thiadiazol-2-yl)ethyl sulfide) on human senescent dermal fibroblasts and aged human skin. Here, primary human dermal fibroblasts (HDFs) were induced to senescence by long-term passaging, ionizing radiation, and treatment with doxorubicin, an anticancer drug. Cell viability of HDFs was assessed after BPTES treatment. A mouse/human chimeric model was created by subcutaneously transplanting whole skin grafts from aged humans into nude mice. The model was treated intraperitoneally with BPTES or vehicle for 30 days. Skin samples were collected and subjected to reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blotting, and histological analysis. BPTES selectively eliminated senescent dermal fibroblasts regardless of the method used to induce senescence; aged human skin grafts treated with BPTES exhibited increased collagen density, increased cell proliferation in the dermis, and decreased aging-related secretory phenotypes, such as matrix metalloprotease and interleukin. These effects were maintained in the grafts 1 month after termination of the treatment. In conclusion, selective removal of senescent dermal fibroblasts can improve the skin aging phenotype, indicating that BPTES may be an effective novel therapeutic agent for skin aging.
Collapse
|
13
|
Cellular Senescence in Physiological and Pathological Processes. Int J Mol Sci 2022; 23:ijms232113342. [DOI: 10.3390/ijms232113342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
This Special Issue aims to address the impact of cellular senescence on human biology, looking at both physiological and pathological processes [...]
Collapse
|
14
|
Molecular Mechanisms of Changes in Homeostasis of the Dermal Extracellular Matrix: Both Involutional and Mediated by Ultraviolet Radiation. Int J Mol Sci 2022; 23:ijms23126655. [PMID: 35743097 PMCID: PMC9223561 DOI: 10.3390/ijms23126655] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/12/2022] [Accepted: 06/12/2022] [Indexed: 02/01/2023] Open
Abstract
Skin aging is a multi-factorial process that affects nearly every aspect of skin biology and function. With age, an impairment of structures, quality characteristics, and functions of the dermal extracellular matrix (ECM) occurs in the skin, which leads to disrupted functioning of dermal fibroblasts (DFs), the main cells supporting morphofunctional organization of the skin. The DF functioning directly depends on the state of the surrounding collagen matrix (CM). The intact collagen matrix ensures proper adhesion and mechanical tension in DFs, which allows these cells to maintain collagen homeostasis while ECM correctly regulates cellular processes. When the integrity of CM is destroyed, mechanotransduction is disrupted, which is accompanied by impairment of DF functioning and destruction of collagen homeostasis, thereby contributing to the progression of aging processes in skin tissues. This article considers in detail the processes of skin aging and associated changes in the skin layers, as well as the mechanisms of these processes at the molecular level.
Collapse
|