1
|
Manchanda A, Goyal B. Inhibitory mechanism of lithospermic acid on the fibrillation of type 2 diabetes associated islet amyloid polypeptide. J Mol Graph Model 2025; 136:108972. [PMID: 39919485 DOI: 10.1016/j.jmgm.2025.108972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 01/21/2025] [Accepted: 01/29/2025] [Indexed: 02/09/2025]
Abstract
The abnormal fibrillation of a 37-residue peptide hormone human islet amyloid polypeptide (hIAPP) is linked with type 2 diabetes (T2D). Pang et al. depicted a prominent role of lithospermic acid (LA) in blocking hIAPP fibrillation and alleviating the hIAPP aggregates-induced cytotoxicity. LA is a polyphenolic compound present in extra virgin olive oil with therapeutic properties. Despite its notable inhibitory effect on hIAPP fibrillation, the inhibition mechanism remains unclear. Here, molecular dynamics (MD) simulations have been utilized to shed light on the putative binding mechanism and inhibitory mechanism of LA against hIAPP fibrillation. The molecular docking predicted favourable binding (-7.1 kcal/mol) of LA with hIAPP. Interestingly, LA increases the helix content in hIAPP and blocks the conformational transition to the aggregation-competent conformations. The conformational clustering and hydrogen bond analyses depicted that LA formed hydrogen bonds with Asn21 of hIAPP, which play an important role in hIAPP aggregation. LA binds favourably to hIAPP (ΔGbinding = -49.62 ± 3.34 kcal/mol) with a major contribution from the van der Waals interactions. The MD simulations highlighted that LA dramatically interfered with the intrapeptide interactions and inhibited sampling of aggregation-competent β-sheet conformations in hIAPP via hydrogen bonds through its hydroxyl groups, van der Waals interactions with hIAPP residues, thus blocking hIAPP aggregation to β-sheet rich cytotoxic fibrillar aggregates. The MD simulations illuminated specific interactions between hIAPP and LA, which will benefit in developing new chemical entities against hIAPP fibrillation.
Collapse
Affiliation(s)
- Anisha Manchanda
- Department of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004, Punjab, India
| | - Bhupesh Goyal
- Department of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004, Punjab, India.
| |
Collapse
|
2
|
Yang W, Li J, Tian J, Liu X, Xie W, Wu X, Zhang Z, Song Y, Wang S, Zhao S, Wang Z, Yang Y, Jin Z. Pharmacological activity, phytochemistry, and organ protection of lithospermic acid. J Cell Physiol 2025; 240:e31460. [PMID: 39402901 DOI: 10.1002/jcp.31460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/12/2024] [Accepted: 09/26/2024] [Indexed: 01/15/2025]
Abstract
Lithospermic acid (LA) is a water-soluble phenolic acid compound extracted and separated from the dried root and the rhizome of Salviamiltiorrhiza Bge (Labiatae), possessing multiple biological activities. Firstly, in terms of pharmacological activities, LA has been proven to possess anti-inflammatory, antioxidant, autophagy activation, and antiapoptotic properties. Secondly, the pharmacokinetic characteristics of LA show rapid and extensive distribution in various tissues after intravenous administration, followed by rapid elimination and excretion. Additionally, potential therapeutic effects of LA have been found in various diseases such as thrombosis, Parkinson's disease, hepatitis B, diabetes, and psoriasis, among others. Particularly, LA has shown promising prospects in the treatment of clinical heart diseases and has been included in new drug formulations for the treatment of chronic angina, demonstrating superior efficacy compared to current cardiovascular drugs. In conclusion, this review comprehensively introduces the pharmacological mechanisms, pharmacokinetics, and protective effects in diseases of LA. These information can lay a theoretical foundation for the future development and new clinical applications of LA.
Collapse
Affiliation(s)
- Wenwen Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Jiayan Li
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Jiayin Tian
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Xiaoyi Liu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Wentao Xie
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Xue Wu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Zhe Zhang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yuefei Song
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Shuya Wang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Shiyan Zhao
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Yang Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
3
|
Burlec AF, Hăncianu M, Ivănescu B, Macovei I, Corciovă A. Exploring the Therapeutic Potential of Natural Compounds in Psoriasis and Their Inclusion in Nanotechnological Systems. Antioxidants (Basel) 2024; 13:912. [PMID: 39199158 PMCID: PMC11352172 DOI: 10.3390/antiox13080912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Psoriasis is a chronic inflammatory disease that affects around 2-3% of the world's population. The treatment for this autoimmune disease still remains centered around conventional methods using synthetic substances, even though more recent advancements focus on biological therapies. Given the numerous side effects of such treatments, current research involves plant extracts and constituents that could prove useful in treating psoriasis. The aim of this narrative review is to highlight the most known representatives belonging to classes of natural compounds such as polyphenols (e.g., astilbin, curcumin, hesperidin, luteolin, proanthocyanidins, and resveratrol), alkaloids (e.g., berberine, capsaicin, and colchicine), coumarins (psoralen and 8-methoxypsoralen), and terpenoids (e.g., celastrol, centelloids, and ursolic acid), along with plants used in traditional medicine that could present therapeutic potential in psoriasis. The paper also provides an overview of these compounds' mechanisms of action and current inclusion in clinical studies, as well as an investigation into their potential incorporation in various nanotechnological systems, such as lipid-based nanocarriers or polymeric nanomaterials, that may optimize their efficacy during treatment.
Collapse
Affiliation(s)
- Ana Flavia Burlec
- Department of Drug Analysis, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.F.B.); (A.C.)
| | - Monica Hăncianu
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania;
| | - Bianca Ivănescu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Irina Macovei
- Department of Drug Analysis, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.F.B.); (A.C.)
| | - Andreia Corciovă
- Department of Drug Analysis, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.F.B.); (A.C.)
| |
Collapse
|
4
|
Liang H, Ren Y, Huang Y, Xie X, Zhang M. Treatment of diabetic retinopathy with herbs for tonifying kidney and activating blood circulation: A review of pharmacological studies. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118078. [PMID: 38513781 DOI: 10.1016/j.jep.2024.118078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic retinopathy (DR) is a prevalent microvascular complication of diabetes. Chinese medicine believes that kidney deficiency and blood stasis are significant pathogenesis of DR. A characteristic therapeutic approach for this pathogenesis is the kidney-tonifying and blood-activating method. By literature retrieval from several databases, we methodically summarized the commonly used kidney-tonifying and blood-activating herbs for treating DR, including Lycii Fructus, Rehmanniane Radix Praeparata, and Corni Fructus with the function of nourishing kidney; Salvia Miltiorrhizae Radix et Rhizoma with the function of enhancing blood circulation; Rehmanniae Radix with the function of nourishing kidney yin; and Astragali Radix with the function of tonifying qi. It has been demonstrated that these Chinese herbs described above, by tonifying the kidney and activating blood circulation, significantly improve the course of DR. AIM OF THE STUDY Through literature research, to gain a thorough comprehension of the pathogenesis of DR. Simultaneously, through the traditional application analysis, modern pharmacology research and network pharmacology analysis of kidney-tonifying and blood-activating herbs, to review the effectiveness and advantages of kidney-tonifying and blood-activating herbs in treating DR comprehensively. MATERIALS AND METHODS PubMed, the China National Knowledge Infrastructure (CNKI), and Wanfang Data were used to filter the most popular herbs for tonifying kidney and activating blood in the treatment of DR. The search terms were "diabetic retinopathy" and "tonifying kidney and activating blood". Mostly from 2000 to 2023. Network pharmacology was applied to examine the key active components and forecast the mechanisms of kidney-tonifying and blood-activating herbs in the treatment of DR. RESULTS Kidney deficiency and blood stasis are the pathogenesis of DR, and the pathogenesis is linked to oxidative stress, inflammation, hypoxia, and hyperglycemia. Scientific data and network pharmacology analysis have demonstrated the benefit of tonifying kidney and activating blood herbs in treating DR through several channels, multiple components, and multiple targets. CONCLUSIONS This review first presents useful information for subsequent research into the material foundation and pharmacodynamics of herbs for tonifying kidney and activating blood, and offers fresh insights into the treatment of DR.
Collapse
Affiliation(s)
- Huan Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuxia Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xuejun Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, China.
| | - Mei Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
5
|
Biswasroy P, Pradhan D, Pradhan DK, Ghosh G, Rath G. Development of Betulin-Loaded Nanostructured Lipid Carriers for the Management of Imiquimod-Induced Psoriasis. AAPS PharmSciTech 2024; 25:57. [PMID: 38472545 DOI: 10.1208/s12249-024-02774-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Psoriasis is a complex and persistent autoimmune skin disease. The present research focused on the therapeutic evaluation of betulin-loaded nanostructured lipid carriers (BE-NLCs) towards managing psoriasis. The BE-NLCs were synthesized using the emulsification cum solidification method, exhibiting a spherical shape with a particle size of 183.5±1.82nm and a narrow size distribution window (PDI: 0.142±0.05). A high zeta potential -38.64±0.05mV signifies the relative stability of the nano-dispersion system. BE-NLCs show a drug loading and entrapment efficiency of 47.35±3.25% and 87.8±7.86%, respectively. In vitro release study, BE NLCs show a cumulative percentage release of 90.667±5.507% over BE-sol (57.334±5.03%) and BD-oint (42±4.58%) for 720min. In an ex vivo 24-h permeation study, % cumulative amount permeated per cm2 was found to be 55.667±3.33% from BE-NLCs and 32.012±3.26% from BE-sol, demonstrating a better permeability of 21.66% when compared to the standard formulation BD-oint. The in vivo anti-psoriatic activity in the IMQ-induced model shows topical application of BE-sol, BE-NLCs, and BD-oint resulted in recovery rates of 56%, 82%, and 65%, respectively, based on PASI (Psoriasis Area and Severity Index) score. Notably, BE-NLCs demonstrated a more significant reduction in spleen mass, indicating attenuation of the local innate immune system in psoriatic mice. Reductions in TNF-α, IL-6, and IL-17 levels were observed in both BE-sol and BE-NLCs groups compared to the disease control (DC) group, with BE-NLCs exhibiting superior outcomes (74.05%, 44.76%, and 49.26% reduction, respectively). Soy lecithin and squalene-based NLCs could be better carrier system for the improvement of the therapeutic potential of BE towards management of psoriasis.
Collapse
Affiliation(s)
- Prativa Biswasroy
- Department of Herbal Nanotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), 751003, Bhubaneswar, Odisha, India
| | - Deepak Pradhan
- Department of Herbal Nanotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), 751003, Bhubaneswar, Odisha, India
| | - Dilip Kumar Pradhan
- Department of Medicine, Pandit Raghunath Murmu Medical College, and Hospital, Baripada, Odisha, India
| | - Goutam Ghosh
- Department of Herbal Nanotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), 751003, Bhubaneswar, Odisha, India.
| | - Goutam Rath
- Department of Herbal Nanotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), 751003, Bhubaneswar, Odisha, India.
| |
Collapse
|
6
|
Wertz PW. Synopsis of Barrier Function of Skin and Mucosa-Volume 2. Int J Mol Sci 2023; 24:13690. [PMID: 37761991 PMCID: PMC10530840 DOI: 10.3390/ijms241813690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
This is an attempt to briefly summarize the contributions to this second Special Issue of the International Journal of Molecular Sciences on the barrier function of the skin and the oral mucosa [...].
Collapse
Affiliation(s)
- Philip W Wertz
- Dows Institute for Dental Research, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
7
|
L Bello M, Mendes GEM, Silva ACR, Faria RX. Virtual screening indicates potential inhibitors of the P2X7 receptor. Comput Biol Med 2023; 164:107299. [PMID: 37552915 DOI: 10.1016/j.compbiomed.2023.107299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/10/2023]
Abstract
Anti-inflammatory agents can be synthetic or natural compounds and are often used to attenuate different levels of inflammation. Inflammatory diseases, due to the involvement of multiple systems, are becoming difficult to treat, involve long durations of therapy where applicable, have a high cost of management and have a deleterious impact on public health. The search for natural and synthetic compounds with anti-inflammatory activity is an important strategy in drug design. Bioactive synthetic drugs may be repurposed for other pharmacological applications, and natural product chemical structures offer unlimited opportunities for new drug discoveries due to the unparalleled availability of chemical diversity. Virtual screening of 2774 molecules on the mouse P2X7 protein showed that potential ligands are composed of five flavonoids (narirutin, diosmin, complanatuside, hesperidin, and oroxin B) and other drugs such as velpatasvir, itacitinib and lifitegrast. In vitro studies in mouse cells confirmed the inhibitory activity of the indicated ligands on the P2X7 receptor by applying virtual screening. The behavior of protein bonded to the ligands was verified by analysis of the molecular dynamic simulation trajectories for four of the most potent inhibitor compounds, indicating that the ligands velpatasvir, itacitinib, lithospermic acid and narirutin remained in the binding site indicated by molecular docking.
Collapse
Affiliation(s)
- Murilo L Bello
- Pharmaceutical Planning and Computer Simulation Laboratory, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guilherme Eduardo M Mendes
- Pharmaceutical Planning and Computer Simulation Laboratory, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil; Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Ana Cláudia R Silva
- Laboratory for Environmental Health Assessment and Promotion, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Robson X Faria
- Laboratory for Environmental Health Assessment and Promotion, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Guo JW, Cheng YP, Lim CJ, Liu CY, Jee SH. A Promising Approach to Treat Psoriasis: Inhibiting Cytochrome P450 3A4 Metabolism to Enhance Desoximetasone Therapy. Pharmaceutics 2023; 15:2016. [PMID: 37631230 PMCID: PMC10458942 DOI: 10.3390/pharmaceutics15082016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023] Open
Abstract
(1) Background: Human keratinocytes and murine skin express various cytochrome P450 enzymes. These include cytochrome P450 3A4, which may participate in the metabolism of cytochrome P450 3A4 substrate drugs. Desoximetasone, a topical corticosteroid and cytochrome P450 3A4 substrate, is used to treat skin conditions such as skin allergies, atopic dermatitis, and psoriasis. In this study, we aimed to investigate the anti-psoriatic effect of a low dose of desoximetasone by inhibiting cytochrome P450 3A4 metabolism in the epidermis. (2) Methods: Psoriasis-like skin was induced in BALB/c mice via the topical administration of imiquimod. The mice were then topically treated with 0.01-0.05% desoximetasone loaded into a cytochrome P450 3A4 enzyme inhibitor excipient base emollient microemulsion, 0.25% commercial desoximetasone ointment, or 0.5 mg/gm clobetasol ointment. (3) Results: The topical application of 0.05% desoximetasone loaded into a cytochrome P450 3A4 enzyme inhibitor excipient base emollient formulation restored the imiquimod-induced skin barrier disruption and resulted in fewer severe clinical and pathological features compared with the treatments with 0.25% commercial desoximetasone ointment and 0.5 mg/gm clobetasol ointment. (4) Conclusions: The cytochrome P450 3A4 enzyme inhibitor excipient base emollient formulation improved and prolonged the therapeutic effect of cytochrome P450 3A4 substrate drugs and may be a promising approach for psoriasis treatment.
Collapse
Affiliation(s)
- Jiun-Wen Guo
- Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan
| | - Yu-Pin Cheng
- Department of Dermatology, Cathay General Hospital, Taipei 10630, Taiwan;
| | - Cherng-Jyr Lim
- Department of Emergency Medicine, Cathay General Hospital, Taipei 10630, Taiwan;
| | - Chih-Yi Liu
- Division of Pathology, Sijhih Cathay General Hospital, New Taipei City 22174, Taiwan;
| | - Shiou-Hwa Jee
- Department of Dermatology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan;
| |
Collapse
|