1
|
Cordeiro R, Oliveira D, Santo D, Coelho J, Faneca H. Mesoporous silica-glycopolymer hybrid nanoparticles for dual targeted chemotherapy and gene therapy to liver cancer cells. Int J Pharm 2025; 675:125553. [PMID: 40187702 DOI: 10.1016/j.ijpharm.2025.125553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/13/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
The development of nanocarriers for pharmaceutical applications is a challenging research field as they have to fulfil several requirements, such as suitable physicochemical properties, biocompatibility, loading capacity for therapeutic agents, high stability in the bloodstream, and specific delivery to the target cells. This task becomes even more difficult when trying to transport two different therapeutic agents simultaneously, as is required by most of the current therapeutic strategies. Mesoporous silica nanoparticles (MSN) fulfil most of these requirements, although they partially fail in the last two. However, these weaknesses can be circumvented if they are combined with another type of material such as polymers. In this context, the main goal of this research work was to develop MSN-based nanocarriers capable to co-transport drugs and nucleic acids and to specifically deliver them in liver cancer cells. To this end, we have prepared MSNs coated with lactobionic acid-based copolymers, as lactobionic acid has a high binding affinity to asialoglycoprotein receptors (ASGPR), which are overexpressed in liver cells. The designed hybrid MSN-based nanocarriers exhibited appropriate physicochemical properties, high ASGPR specificity and high biological activity. These MSN-glycopolymer hybrid nanosystems showed a 280-fold higher transfection activity in liver cancer cells than bare MSN particles. Furthermore, we demonstrated the ability of these nanosystems to efficiently mediate a combined antitumor strategy involving HSV-TK/GCV suicide gene therapy and chemotherapy (epirubicin), in liver cancer cells. Overall, the data obtained showed the great potential of this MSN-based nanoplatform to be applied in combined therapeutic strategies for the treatment of liver cancer.
Collapse
Affiliation(s)
- Rosemeyre Cordeiro
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Daniel Oliveira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra 3004-504 Coimbra, Portugal
| | - Daniela Santo
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal; Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima - Pólo II, 3030-790 Coimbra, Portugal
| | - Jorge Coelho
- Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima - Pólo II, 3030-790 Coimbra, Portugal; IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, 3030-199 Coimbra, Portugal
| | - Henrique Faneca
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
2
|
Sun Z, Li X. A promising mesoporous silica carrier material for the diagnosis and treatment of liver diseases: recent research advances. J Mater Chem B 2025; 13:1935-1960. [PMID: 39801308 DOI: 10.1039/d4tb01822b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The therapeutic diagnosis of liver diseases has garnered significant interest within the medical community. In recent years, mesoporous silica nanoparticles (MSNs) have emerged as crucial nanocarriers for the treatment of liver ailments. Their remarkable diagnostic capabilities enable them to be used in techniques such as high-throughput mass spectrometry (MS), magnetic resonance imaging (MRI), near-infrared (NIR) fluorescence imaging, photoacoustic imaging (PAI), and ultrasonography (US), attracting considerable attention. Furthermore, the introduction of amino and carboxyl group modifications in MSNs has facilitated their use as drug delivery carriers for treating liver diseases, including hepatocellular carcinoma. This paper reviews the preparation methods, in vitro diagnostic capabilities, and in vivo therapeutic delivery systems of MSNs for liver disease treatment. It also summarizes relevant toxicity studies, aiming to provide a comprehensive overview of the diagnostic and therapeutic applications of MSNs in the treatment of liver diseases, particularly hepatocellular carcinoma. Through this review, we seek to offer theoretical insights into the potential of MSNs for diagnostic and therapeutic applications in liver disease treatment.
Collapse
Affiliation(s)
- Zihao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
3
|
Liu B, Liu W, Xu M, Zhao T, Zhou B, Zhou R, Zhu Z, Chen X, Bao Z, Wang K, Li H. Drug delivery systems based on mesoporous silica nanoparticles for the management of hepatic diseases. Acta Pharm Sin B 2025; 15:809-833. [PMID: 40177563 PMCID: PMC11959912 DOI: 10.1016/j.apsb.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 04/05/2025] Open
Abstract
The liver performs multiple life-sustaining functions. Hepatic diseases, including hepatitis, cirrhosis, and hepatoma, pose significant health and economic burdens globally. Along with the advances in nanotechnology, mesoporous silica nanoparticles (MSNs) exhibiting diversiform size and shape, distinct morphological properties, and favorable physico-chemical features have become an ideal choice for drug delivery systems and inspire alternative thinking for the management of hepatic diseases. Initially, we introduce the physiological structure of the liver and highlight its intrinsic cell types and correlative functions. Next, we detail the synthesis methods and physicochemical properties of MSNs and their capacity for controlled drug loading and release. Particularly, we discuss the interactions between liver and MSNs with respect to the passive targeting mechanisms of MSNs within the liver by adjusting their particle size, pore diameter, surface charge, hydrophobicity/hydrophilicity, and surface functionalization. Subsequently, we emphasize the role of MSNs in regulating liver pathophysiology, exploring their value in addressing liver pathological states, such as tumors and inflammation, combined with multi-functional designs and intelligent modes to enhance drug targeting and minimize side effects. Lastly, we put forward the problems, challenges, opportunities, as well as clinical translational issues faced by MSNs in the management of liver diseases.
Collapse
Affiliation(s)
- Boyan Liu
- School of Pharmacy, China Medical University, Shenyang 110122, China
- China Medical University and Queen University of Belfast Joint College, China Medical University, Shenyang 110122, China
| | - Wenshi Liu
- Department of Organ Transplantation and Hepatobiliary, the First Hospital of China Medical University, Shenyang 110001, China
| | - Miao Xu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Tongyi Zhao
- School of Pharmacy, China Medical University, Shenyang 110122, China
- China Medical University and Queen University of Belfast Joint College, China Medical University, Shenyang 110122, China
| | - Bingxin Zhou
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Ruilin Zhou
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Ze Zhu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xuchun Chen
- Department of Organ Transplantation and Hepatobiliary, the First Hospital of China Medical University, Shenyang 110001, China
| | - Zhiye Bao
- Department of Organ Transplantation and Hepatobiliary, the First Hospital of China Medical University, Shenyang 110001, China
| | - Keke Wang
- Department of Pharmacy, the First Hospital of China Medical University, Shenyang 110001, China
| | - Heran Li
- School of Pharmacy, China Medical University, Shenyang 110122, China
- China Medical University and Queen University of Belfast Joint College, China Medical University, Shenyang 110122, China
| |
Collapse
|
4
|
Kumar P, Singh A, Sarkar N, Kaushik M. Protein coupled thionine acetate probed silica nanoparticles: An integrated laser-assisted therapeutic approach for treating cancer. Bioorg Chem 2024; 147:107398. [PMID: 38691907 DOI: 10.1016/j.bioorg.2024.107398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Herein, we report a multifaceted nanoformulation, developed by binding thionine acetate (TA) in silica matrix to form TA loaded silica nanoparticles (STA Nps), which were characterized using various physicochemical techniques. STA NPs were spherical shaped having size 40-50 nm and exhibited good heating efficiency, improved photostability and singlet oxygen production rate than TA alone. In PDT experiment, the rate of degradation for ABDMA was enhanced from 0.1367 min-1 for TA alone to 0.1774 min-1 for STA Nps, depicting an increase in the reactive oxygen species (ROS) generation ability of STA Nps. Further, the cytotoxicity of STA Nps was investigated by carrying out the biophysical studies with Calf thymus DNA (Ct-DNA) and Human Serum Albumin (HSA). The results indicated that the binding of STA Nps to Ct-DNA causes alterations in the double helix structure of DNA and as a result, STA Nps can impart chemotherapeutic effects via targeting DNA. STA Nps showed good binding affinity with HSA without compromising the structure of HSA, which is important for STA Nps sustainable biodistribution and pharmacokinetics. Based on this study, it is suggested that because of the synergistic effect of chemo and phototherapy, STA Nps can be extensively utilized as potential candidates for treating cancer.
Collapse
Affiliation(s)
- Pankaj Kumar
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi 110007, India; Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Amit Singh
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi 110007, India; Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Niloy Sarkar
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi 110007, India
| | - Mahima Kaushik
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi 110007, India.
| |
Collapse
|
5
|
Han Y, Zhang L, Yang W. Synthesis of Mesoporous Silica Using the Sol-Gel Approach: Adjusting Architecture and Composition for Novel Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:903. [PMID: 38869528 PMCID: PMC11173812 DOI: 10.3390/nano14110903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/14/2024]
Abstract
The sol-gel chemistry of silica has long been used for manipulating the size, shape, and microstructure of mesoporous silica particles. This manipulation is performed in mild conditions through controlling the hydrolysis and condensation of silicon alkoxide. Compared to amorphous silica particles, the preparation of mesoporous silica, such as MCM-41, using the sol-gel approach offers several unique advantages in the fields of catalysis, medicament, and environment, due to its ordered mesoporous structure, high specific surface area, large pore volume, and easily functionalized surface. In this review, our primary focus is on the latest research related to the manipulation of mesoporous silica architectures using the sol-gel approach. We summarize various structures, including hollow, yolk-shell, multi-shelled hollow, Janus, nanotubular, and 2D membrane structures. Additionally, we survey sol-gel strategies involving the introduction of various functional elements onto the surface of mesoporous silica to enhance its performance. Furthermore, we outline the prospects and challenges associated with mesoporous silica featuring different structures and functions in promising applications, such as high-performance catalysis, biomedicine, wastewater treatment, and CO2 capture.
Collapse
Affiliation(s)
- Yandong Han
- Institute of Nanoscience and Engineering, Henan University, Zhengzhou 450000, China; (Y.H.); (L.Z.)
| | - Lin Zhang
- Institute of Nanoscience and Engineering, Henan University, Zhengzhou 450000, China; (Y.H.); (L.Z.)
| | - Wensheng Yang
- Institute of Nanoscience and Engineering, Henan University, Zhengzhou 450000, China; (Y.H.); (L.Z.)
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
6
|
Mishra S, Bhatt T, Kumar H, Jain R, Shilpi S, Jain V. Nanoconstructs for theranostic application in cancer: Challenges and strategies to enhance the delivery. Front Pharmacol 2023; 14:1101320. [PMID: 37007005 PMCID: PMC10050349 DOI: 10.3389/fphar.2023.1101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Nanoconstructs are made up of nanoparticles and ligands, which can deliver the loaded cargo at the desired site of action. Various nanoparticulate platforms have been utilized for the preparation of nanoconstructs, which may serve both diagnostic as well as therapeutic purposes. Nanoconstructs are mostly used to overcome the limitations of cancer therapies, such as toxicity, nonspecific distribution of the drug, and uncontrolled release rate. The strategies employed during the design of nanoconstructs help improve the efficiency and specificity of loaded theranostic agents and make them a successful approach for cancer therapy. Nanoconstructs are designed with a sole purpose of targeting the requisite site, overcoming the barriers which hinders its right placement for desired benefit. Therefore, instead of classifying modes for delivery of nanoconstructs as actively or passively targeted systems, they are suitably classified as autonomous and nonautonomous types. At large, nanoconstructs offer numerous benefits, however they suffer from multiple challenges, too. Hence, to overcome such challenges computational modelling methods and artificial intelligence/machine learning processes are being explored. The current review provides an overview on attributes and applications offered by nanoconstructs as theranostic agent in cancer.
Collapse
Affiliation(s)
- Shivani Mishra
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Tanvi Bhatt
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Satish Shilpi
- Department of Pharmaceutics, School of Pharmaceutical and Populations Health Informatics, DIT University, Dehradun, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
- *Correspondence: Vikas Jain,
| |
Collapse
|
7
|
CD13-Mediated Pegylated Carboxymethyl Chitosan-Capped Mesoporous Silica Nanoparticles for Enhancing the Therapeutic Efficacy of Hepatocellular Carcinoma. Pharmaceutics 2023; 15:pharmaceutics15020426. [PMID: 36839748 PMCID: PMC9962034 DOI: 10.3390/pharmaceutics15020426] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/18/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Liver cancer, especially hepatocellular carcinoma, is an important cause of cancer-related death, and its incidence is increasing worldwide. Nano drug delivery systems have shown great promise in the treatment of cancers. In order to improve their therapeutic efficacy, it is very important to realize the high accumulation and effective release of drugs at the tumor site. In this manuscript, using doxorubicin (DOX) as a model drug, CD13-targeted mesoporous silica nanoparticles coated with NGR-peptide-modified pegylated carboxymethyl chitosan were constructed (DOX/MSN-CPN). DOX/MSN-CPN comprises a spherical shape with an obvious capping structure and a particle size of 125.01 ± 1.52 nm. With a decrease in pH, DOX/MSN-CPN showed responsive desorption from DOX/MSN-CPN and pH-responsive release of DOX was observed. Meanwhile, DOX/MSN-CPN could be efficiently absorbed through NGR-mediated internalization in vitro and could efficiently deliver DOX to tumor tissues with long accumulation times in vivo, suggesting good active targeting properties. Moreover, significant tumor inhibition has been observed in antitumor studies in vivo. This study provides a strategy of utilizing DOX/MSN-CPN as a nano-platform for drug delivery, which has superb therapeutic efficacy and safety for the treatment of hepatocellular carcinoma both in vivo and in vitro.
Collapse
|
8
|
Cecilia JA, Moreno-Tost R. Recent Advances in Mesoporous Materials and Their Biomedical Applications. Int J Mol Sci 2022; 23:ijms232415636. [PMID: 36555279 PMCID: PMC9779131 DOI: 10.3390/ijms232415636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Since the beginning of civilization, porous materials have been used for medical purposes [...].
Collapse
|
9
|
Wu H, Wang MD, Zhu JQ, Li ZL, Wang WY, Gu LH, Shen F, Yang T. Mesoporous Nanoparticles for Diagnosis and Treatment of Liver Cancer in the Era of Precise Medicine. Pharmaceutics 2022; 14:1760. [PMID: 36145508 PMCID: PMC9500788 DOI: 10.3390/pharmaceutics14091760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Primary liver cancer is the seventh-most-common cancer worldwide and the fourth-leading cause of cancer mortality. In the current era of precision medicine, the diagnosis and management of liver cancer are full of challenges and prospects. Mesoporous nanoparticles are often designed as specific carriers of drugs and imaging agents because of their special morphology and physical and chemical properties. In recent years, the design of the elemental composition and morphology of mesoporous nanoparticles have greatly improved their drug-loading efficiency, biocompatibility and biodegradability. Especially in the field of primary liver cancer, mesoporous nanoparticles have been modified as highly tumor-specific imaging contrast agents and targeting therapeutic medicine. Various generations of complexes and structures have been determined for the complicated clinical management requirements. In this review, we summarize these advanced mesoporous designs in the different diagnostic and therapeutic fields of liver cancer and discuss the relevant advantages and disadvantages of transforming applications. By comparing the material properties, drug-delivery characteristics and application methods of different kinds of mesoporous materials in liver cancer, we try to help determine the most suitable drug carriers and information media for future clinical trials. We hope to improve the fabrication of biomedical mesoporous nanoparticles and provide direct evidence for specific cancer management.
Collapse
Affiliation(s)
- Han Wu
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310053, China
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai 200438, China
- Eastern Hepatobiliary Clinical Research Institute, Third Affiliated Hospital of Naval Medical University, Shanghai 200438, China
| | - Ming-Da Wang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai 200438, China
| | - Jia-Qi Zhu
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310053, China
| | - Zhen-Li Li
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai 200438, China
| | - Wan-Yin Wang
- Eastern Hepatobiliary Clinical Research Institute, Third Affiliated Hospital of Naval Medical University, Shanghai 200438, China
| | - Li-Hui Gu
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai 200438, China
| | - Feng Shen
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai 200438, China
- Eastern Hepatobiliary Clinical Research Institute, Third Affiliated Hospital of Naval Medical University, Shanghai 200438, China
| | - Tian Yang
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310053, China
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai 200438, China
- Eastern Hepatobiliary Clinical Research Institute, Third Affiliated Hospital of Naval Medical University, Shanghai 200438, China
| |
Collapse
|