1
|
Tang L, Zheng Y, Lu H, Qiu Y, Wang H, Liao H, Xie W. Tissue-specific transcriptomic analysis reveals the molecular mechanisms responsive to cold stress in Poa crymophila, and development of EST-SSR markers linked to cold tolerance candidate genes. BMC PLANT BIOLOGY 2025; 25:360. [PMID: 40102740 PMCID: PMC11921722 DOI: 10.1186/s12870-025-06383-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 03/11/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND Poa crymophila is a perennial, cold-tolerant, native grass species, widely distributed in the Qinghai-Tibet Plateau. However, the tissue-specific regulatory mechanisms and key regulatory genes underlying its cold tolerance remain poorly characterized. Therefore, in this study, based on the screening and evaluation of cold tolerance of four Poa species, the cold tolerance mechanism of P. crymophila's roots, stems, and leaves and its cold tolerance candidate genes were investigated through physiological and transcriptomic analyses. RESULTS Results of the present study suggested that the cold tolerance of the four Poa species was in the following order: P. crymophila > P. botryoides > P. pratensis var. anceps > P. pratensis. Cold stress significantly changed the physiological characteristics of roots, stems, and leaves of P. crymophila in this study. In addition, the transcriptome results showed that 4434, 8793, and 14,942 differentially expressed genes (DEGs) were identified in roots, stems, and leaves, respectively; however, 464 DEGs were commonly identified in these three tissues. KEGG enrichment analysis showed that these DEGs were mainly enriched in the phenylpropanoid biosynthesis pathway (roots), photosynthesis pathway (stems and leaves), circadian rhythm-plant pathway (stems and leaves), starch and sucrose metabolism pathway (roots, stems, and leaves), and galactose metabolism pathway (roots, stems, and leaves). A total of 392 candidate genes involved in Ca2+ signaling, ROS scavenging system, hormones, circadian clock, photosynthesis, and transcription factors (TFs) were identified in P. crymophila. Weighted gene co-expression network analysis (WGCNA) identified nine hub genes that may be involved in P. crymophila cold response. A total of 200 candidate gene-based EST-SSRs were developed and characterized. Twenty-nine polymorphic EST-SSRs primers were finally used to study genetic diversity of 40 individuals from four Poa species with different cold tolerance characteristics. UPGMA cluster and STRUCTURE analysis showed that the 40 Poa individuals were clustered into three major groups, individual plant with similar cold tolerance tended to group together. Notably, markers P37 (PcGA2ox3) and P148 (PcERF013) could distinguish P. crymophila from P. pratensis var. anceps, P. pratensis, and P. botryoides. CONCLUSIONS This study provides new insights into the molecular mechanisms underlying the cold tolerance of P. crymophila, and also lays a foundation for molecular marker-assisted selection for cold tolerance improvement in Poa species.
Collapse
Affiliation(s)
- Liuban Tang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yuying Zheng
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Huanhuan Lu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yongsen Qiu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Huizhi Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Haoqin Liao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Wengang Xie
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| |
Collapse
|
2
|
Wang X, Li H, Wang S, Ruan M, Li Y, Zhu L, Dong Z, Long Y. Genome-wide identification and functional roles relating to anthocyanin biosynthesis analysis in maize. BMC PLANT BIOLOGY 2025; 25:57. [PMID: 39810086 PMCID: PMC11734362 DOI: 10.1186/s12870-025-06053-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025]
Abstract
BACKGROUND Anthocyanin is an important class of water-soluble pigments that are widely distributed in various tissues of plants, and it not only facilitates diverse color changes but also plays important roles in various biological processes. Maize silk, serving as an important reproductive organ and displaying a diverse range of colors, plays an indispensable role in biotic resistance through its possession of anthocyanin. However, the copy numbers, characteristics, and expression patterns of genes involved in maize anthocyanin biosynthesis are not fully understood. In this study, gene numbers, distribution, structure, cis-elements of the anthocyanin synthetic gene family were identified, and then the potential transcriptional factors were predicted by two analyzed methods. Finally, genes involved in maize silk pigment were screened by un-targeted metabolism analysis. RESULTS Ten gene families involved in the maize anthocyanin biosynthesis pathway were identified, and 142 synthetic genes were obtained. These anthocyanin biosynthetic genes have high copy numbers and are normally clustered on chromosomes. The promoters of these synthetic genes contain various cis-elements and the gene expression patterns and transcriptional regulatory networks were analyzed. These genes are distributed on different chromosomes and gene expression patterns vary across different tissues in maize. Specifically, these genes often exhibit higher expression in the stem, leaves, and seeds. Ten highly expressed genes in silks were identified. Based on un-targeted metabolites detection in the silks of four maize representative inbred lines with different colors, two main differential anthocyanin components were identified. Furthermore, the gene expression patterns of the ten highly expressed genes and their potential interacting transcriptional factors were analyzed across the four inbred lines. CONCLUSIONS The results in this study show a through picture of maize anthocyanin synthetic genes, and the structure and function of genes related to anthocyanin biosynthesis in maize could be further investigated.
Collapse
Affiliation(s)
- Xiaofang Wang
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huangai Li
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shuai Wang
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
| | - Meiqi Ruan
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yiping Li
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lei Zhu
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhenying Dong
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing, 100192, China.
| | - Yan Long
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing, 100192, China.
| |
Collapse
|
3
|
Shao X, Zhang Z, Yang F, Yu Y, Guo J, Li J, Xu T, Pan X. Chilling stress response in tobacco seedlings: insights from transcriptome, proteome, and phosphoproteome analyses. FRONTIERS IN PLANT SCIENCE 2024; 15:1390993. [PMID: 38872895 PMCID: PMC11170286 DOI: 10.3389/fpls.2024.1390993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024]
Abstract
Tobacco (Nicotiana tabacum L.) is an important industrial crop, which is sensitive to chilling stress. Tobacco seedlings that have been subjected to chilling stress readily flower early, which seriously affects the yield and quality of their leaves. Currently, there has been progress in elucidating the molecular mechanisms by which tobacco responds to chilling stress. However, little is known about the phosphorylation that is mediated by chilling. In this study, the transcriptome, proteome and phosphoproteome were analyzed to elucidate the mechanisms of the responses of tobacco shoot and root to chilling stress (4 °C for 24 h). A total of 6,113 differentially expressed genes (DEGs), 153 differentially expressed proteins (DEPs) and 345 differential phosphopeptides were identified in the shoot, and the corresponding numbers in the root were 6,394, 212 and 404, respectively. This study showed that the tobacco seedlings to 24 h of chilling stress primarily responded to this phenomenon by altering their levels of phosphopeptide abundance. Kyoto Encyclopedia of Genes and Genomes analyses revealed that starch and sucrose metabolism and endocytosis were the common pathways in the shoot and root at these levels. In addition, the differential phosphopeptide corresponding proteins were also significantly enriched in the pathways of photosynthesis-antenna proteins and carbon fixation in photosynthetic organisms in the shoot and arginine and proline metabolism, peroxisome and RNA transport in the root. These results suggest that phosphoproteins in these pathways play important roles in the response to chilling stress. Moreover, kinases and transcription factors (TFs) that respond to chilling at the levels of phosphorylation are also crucial for resistance to chilling in tobacco seedlings. The phosphorylation or dephosphorylation of kinases, such as CDPKs and RLKs; and TFs, including VIP1-like, ABI5-like protein 2, TCP7-like, WRKY 6-like, MYC2-like and CAMTA7 among others, may play essential roles in the transduction of tobacco chilling signal and the transcriptional regulation of the genes that respond to chilling stress. Taken together, these findings provide new insights into the molecular mechanisms and regulatory networks of the responses of tobacco to chilling stress.
Collapse
Affiliation(s)
- Xiuhong Shao
- Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Guangzhou, China
| | - Zhenchen Zhang
- Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Guangzhou, China
| | - Faheng Yang
- China National Tobacco Corporation, Guangdong Company, Guangzhou, China
| | - Yongchao Yu
- China National Tobacco Corporation, Guangdong Company, Guangzhou, China
| | - Junjie Guo
- China National Tobacco Corporation, Guangdong Company, Guangzhou, China
| | - Jiqin Li
- Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Guangzhou, China
| | - Tingyu Xu
- Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Guangzhou, China
| | - Xiaoying Pan
- Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Guangzhou, China
| |
Collapse
|
4
|
Li A, Lin J, Zeng Z, Deng Z, Tan J, Chen X, Ding G, Zhu M, Xu B, Atkinson RG, Nieuwenhuizen NJ, Ampomah-Dwamena C, Cheng Y, Deng X, Zeng Y. The kiwifruit amyloplast proteome (kfALP): a resource to better understand the mechanisms underlying amyloplast biogenesis and differentiation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:565-583. [PMID: 38159243 DOI: 10.1111/tpj.16611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 10/25/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
The biogenesis and differentiation (B&D) of amyloplasts contributes to fruit flavor and color. Here, remodeling of starch granules, thylakoids and plastoglobules was observed during development and ripening in two kiwifruit (Actinidia spp.) cultivars - yellow-fleshed 'Hort16A' and green-fleshed 'Hayward'. A protocol was developed to purify starch-containing plastids with a high degree of intactness, and amyloplast B&D was studied using label-free-based quantitative proteomic analyses in both cultivars. Over 3000 amyloplast-localized proteins were identified, of which >98% were quantified and defined as the kfALP (kiwifruit amyloplast proteome). The kfALP data were validated by Tandem-Mass-Tag (TMT) labeled proteomics in 'Hort16A'. Analysis of the proteomic data across development and ripening revealed: 1) a conserved increase in the abundance of proteins participating in starch synthesis/degradation during both amyloplast B&D; 2) up-regulation of proteins for chlorophyll degradation and of plastoglobule-localized proteins associated with chloroplast breakdown and plastoglobule formation during amyloplast differentiation; 3) constitutive expression of proteins involved in ATP supply and protein import during amyloplast B&D. Interestingly, two different pathways of amyloplast B&D were observed in the two cultivars. In 'Hayward', significant increases in abundance of photosynthetic- and tetrapyrrole metabolism-related proteins were observed, but the opposite trend was observed in 'Hort16A'. In conclusion, analysis of the kfALP provides new insights into the potential mechanisms underlying amyloplast B&D with relevance to key fruit quality traits in contrasting kiwifruit cultivars.
Collapse
Affiliation(s)
- Ang Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Jiajia Lin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Zhebin Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Zhiping Deng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jinjuan Tan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaoya Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Gang Ding
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Man Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Bin Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Ross G Atkinson
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, Auckland, 92169, New Zealand
| | - Niels J Nieuwenhuizen
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, Auckland, 92169, New Zealand
| | - Charles Ampomah-Dwamena
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, Auckland, 92169, New Zealand
| | - Yunjiang Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Yunliu Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| |
Collapse
|
5
|
Guo H, Deng M, Yu F, Li H, Cao Z, Zeng Q, Chen Z, Luo H, Tang B. Phenotypic and Proteomic Insights into Differential Cadmium Accumulation in Maize Kernels. Genes (Basel) 2023; 14:2204. [PMID: 38137026 PMCID: PMC10742529 DOI: 10.3390/genes14122204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The contamination of agricultural soil with cadmium (Cd), a heavy metal, poses a significant environmental challenge, affecting crop growth, development, and human health. Previous studies have established the pivotal role of the ZmHMA3 gene, a P-type ATPase heavy metal transporter, in determining variable Cd accumulation in maize grains among 513 inbred lines. To decipher the molecular mechanism underlying mutation-induced phenotypic differences mediated by ZmHMA3, we conducted a quantitative tandem mass tag (TMT)-based proteomic analysis of immature maize kernels. This analysis aimed to identify differentially expressed proteins (DEPs) in wild-type B73 and ZmHMA3 null mutant under Cd stress. The findings demonstrated that ZmHMA3 accumulated higher levels of Cd compared to B73 when exposed to varying Cd concentrations in the soil. In comparison to soil with a low Cd concentration, B73 and ZmHMA3 exhibited 75 and 142 DEPs, respectively, with 24 common DEPs shared between them. ZmHMA3 showed a higher induction of upregulated genes related to Cd stress than B73. Amino sugar and nucleotide sugar metabolism was specifically enriched in B73, while phenylpropanoid biosynthesis, nitrogen metabolism, and glyoxylate and dicarboxylate metabolism appeared to play a more significant role in ZmHMA3. This study provides proteomics insights into unraveling the molecular mechanism underlying the differences in Cd accumulation in maize kernels.
Collapse
Affiliation(s)
- Huanle Guo
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.G.); (M.D.)
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (H.L.); (Z.C.); (Q.Z.); (Z.C.)
| | - Min Deng
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.G.); (M.D.)
- Maize Engineering Technology Research Center of Hunan Province, Changsha 410128, China
| | - Feng Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China;
| | - Han Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (H.L.); (Z.C.); (Q.Z.); (Z.C.)
| | - Zhongyang Cao
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (H.L.); (Z.C.); (Q.Z.); (Z.C.)
| | - Qiang Zeng
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (H.L.); (Z.C.); (Q.Z.); (Z.C.)
| | - Zhihui Chen
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (H.L.); (Z.C.); (Q.Z.); (Z.C.)
| | - Hongbing Luo
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.G.); (M.D.)
- Maize Engineering Technology Research Center of Hunan Province, Changsha 410128, China
| | - Bin Tang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (H.L.); (Z.C.); (Q.Z.); (Z.C.)
| |
Collapse
|
6
|
Chen L, Yang J, Hu H, Jiang Y, Feng L, Liu J, Zhong K, Liu P, Ma Y, Chen M, Yang J. Large-scale phosphoproteome analysis in wheat seedling leaves provides evidence for extensive phosphorylation of regulatory proteins during CWMV infection. BMC PLANT BIOLOGY 2023; 23:532. [PMID: 37914991 PMCID: PMC10621099 DOI: 10.1186/s12870-023-04559-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Chinese wheat mosaic virus (CWMV) often causes severe damage to wheat (Triticum aestivum L.) growth and yield. It is well known that a successful infection in plants depends on a complex interaction between the host plant and the pathogen. Post-translational modification (PTM) of proteins is considered to be one of the main processes that decides the outcome of the plant-pathogen arms race during this interaction. Although numerous studies have investigated PTM in various organisms, there has been no large-scale phosphoproteomic analysis of virus-infected wheat plants. We therefore aimed to investigate the CWMV infection-induced phosphoproteomics changes in wheat by high-resolution liquid chromatography-tandem mass spectroscopy (LC-MS/MS) using affinity-enriched peptides followed by comprehensive bioinformatics analysis. RESULTS Through this study, a total of 4095 phosphorylation sites have been identified in 1968 proteins, and 11.6% of the phosphorylated proteins exhibited significant changes (PSPCs) in their phosphorylation levels upon CWMV infection. The result of Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that most of the PSPCs were associated with photosynthesis, plant-pathogen interactions, and MAPK signaling pathways. The protein-protein interaction (PPI) network analysis result showed that these PSPCs were mainly participated in the regulation of biosynthesis and metabolism, protein kinase activities, and transcription factors. Furthermore, the phosphorylation levels of TaChi1 and TaP5CS, two plant immunity-related enzymes, were significantly changed upon CWMV infection, resulting in a significant decrease in CWMV accumulation in the infected plants. CONCLUSIONS Our results indicate that phosphorylation modification of protein plays a critical role in wheat resistance to CWMV infection. Upon CWMV infection, wheat plants will regulate the levels of extra- and intra-cellular signals and modifications of enzyme activities via protein phosphorylation. This novel information about the strategies used by wheat to resist CWMV infection will help researchers to breed new CWMV-resistant cultivars and to better understand the arms race between wheat and CWMV.
Collapse
Affiliation(s)
- Lu Chen
- Institute of Crop Sciences, State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jin Yang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Haichao Hu
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yaoyao Jiang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Lixiao Feng
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jiaqian Liu
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Kaili Zhong
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Peng Liu
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Youzhi Ma
- Institute of Crop Sciences, State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Ming Chen
- Institute of Crop Sciences, State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
| | - Jian Yang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
7
|
Tao M, Liu S, Liu A, Li Y, Tian J, Yang B, Zhu W. Integrative Proteomic and Phosphoproteomic Analyses Revealed the Regulatory Mechanism of the Response to Ultraviolet B Stress in Clematis terniflora DC. ACS OMEGA 2023; 8:1652-1662. [PMID: 36643485 PMCID: PMC9835548 DOI: 10.1021/acsomega.2c07258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Clematis terniflora DC. (C. terniflora) has been used as an ancient Chinese traditional herbal medicine. The active substances in C. terniflora have been confirmed to be effective in treating diseases such as prostatitis. UV light radiation is a common environmental factor that damages plants and influences primary and secondary metabolism. Previous studies showed that ultraviolet B (UV-B) radiation followed by dark stress resulted in the accumulation of secondary metabolites in C. terniflora leaves. An in-depth understanding of how C. terniflora leaves respond to UV-B stress is crucial for improving C. terniflora value. Here, we conducted label-free proteomic and phosphoproteomic analyses to explore the protein changes under UV-B and UV-B combined with dark treatment. A total of 2839 proteins and 1638 phosphorylated proteins were identified. Integrative omics revealed that the photosynthetic system and carbohydrate balance were modulated under both stresses. The phosphoproteomic data indicated that the mitogen-activated protein kinase signaling pathway was triggered, while the abundance of phosphorylated proteins related to osmotic stress was increased under UV-B stress. Differentially abundant phosphoproteins from UV-B followed by dark treatment were mainly enriched in response to stimulus including calcium-mediated proteins. This study provides new insight into the impact of UV-B stress on C. terniflora and plant molecular resistance mechanisms through proteomic and phosphoproteomic analyses.
Collapse
Affiliation(s)
- Minglei Tao
- College
of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Shengzhi Liu
- College
of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Amin Liu
- College
of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Yaohan Li
- College
of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Jingkui Tian
- The
Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang
Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Bingxian Yang
- College
of Life Sciences and Medicine, Zhejiang
Sci-Tech University, Hangzhou 310018, China
| | - Wei Zhu
- The
Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang
Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| |
Collapse
|
8
|
Chen N, Fan X, Wang C, Jiao P, Jiang Z, Ma Y, Guan S, Liu S. Overexpression of ZmDHN15 Enhances Cold Tolerance in Yeast and Arabidopsis. Int J Mol Sci 2022; 24:480. [PMID: 36613921 PMCID: PMC9820458 DOI: 10.3390/ijms24010480] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/12/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Maize (Zea mays L.) originates from the subtropical region and is a warm-loving crop affected by low-temperature stress. Dehydrin (DHN) protein, a member of the Group 2 LEA (late embryogenesis abundant proteins) family, plays an important role in plant abiotic stress. In this study, five maize DHN genes were screened based on the previous transcriptome sequencing data in our laboratory, and we performed sequence analysis and promoter analysis on these five DHN genes. The results showed that the promoter region has many cis-acting elements related to cold stress. The significantly upregulated ZmDHN15 gene has been further screened by expression pattern analysis. The subcellular localization results show that ZmDHN15 fusion protein is localized in the cytoplasm. To verify the role of ZmDHN15 in cold stress, we overexpressed ZmDHN15 in yeast and Arabidopsis. We found that the expression of ZmDHN15 can significantly improve the cold resistance of yeast. Under cold stress, ZmDHN15-overexpressing Arabidopsis showed lower MDA content, lower relative electrolyte leakage, and less ROS (reactive oxygen species) when compared to wild-type plants, as well as higher seed germination rate, seedling survival rate, and chlorophyll content. Furthermore, analysis of the expression patterns of ROS-associated marker genes and cold-response-related genes indicated that ZmDHN15 genes play an important role in the expression of these genes. In conclusion, the overexpression of the ZmDHN15 gene can effectively improve the tolerance to cold stress in yeast and Arabidopsis. This study is important for maize germplasm innovation and the genetic improvement of crops.
Collapse
Affiliation(s)
- Nannan Chen
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Xuhong Fan
- Jilin Academy of Agricultural Sciences, Changchun 130118, China
| | - Chunlai Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Peng Jiao
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Zhenzhong Jiang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yiyong Ma
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Shuyan Guan
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Siyan Liu
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
9
|
Komatsu S, Colgrave ML. Plant Proteomic Research 5.0: From Data to Insights. Int J Mol Sci 2022; 24:ijms24010258. [PMID: 36613697 PMCID: PMC9820467 DOI: 10.3390/ijms24010258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
Proteomics offers one of the best approaches for the functional analysis of the genome, generating detailed information that can be integrated with that obtained by other classic and omics approaches [...].
Collapse
Affiliation(s)
- Setsuko Komatsu
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-0028, Japan
- Correspondence:
| | - Michelle L. Colgrave
- CSIRO Agriculture & Food, 306 Carmody Road, Brisbane, QLD 4053, Australia
- School of Science, Edith Cowan University, 270 Joondalup Rd., Joondalup, WA 6027, Australia
| |
Collapse
|
10
|
Labudda M, Dai S, Deng Z, Li L. Editorial: Regulation of proteolysis and proteome composition in plant response to environmental stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1080083. [PMID: 36457521 PMCID: PMC9708044 DOI: 10.3389/fpls.2022.1080083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Shaojun Dai
- China Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zhiping Deng
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ling Li
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States
| |
Collapse
|