1
|
Purcell E, Shah J, Powell C, Nguyen T, Zhou L, McDonald CA, Allison BJ, Malhotra A. Umbilical cord blood-derived therapy for preterm lung injury: a systematic review and meta-analysis. Stem Cells Transl Med 2024; 13:606-624. [PMID: 38819251 PMCID: PMC11227974 DOI: 10.1093/stcltm/szae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/14/2024] [Indexed: 06/01/2024] Open
Abstract
INTRODUCTION Lung injuries, such as bronchopulmonary dysplasia (BPD), remain a major complication of preterm birth, with limited therapeutic options. One potential emerging therapy is umbilical cord blood (UCB)-derived therapy. OBJECTIVES To systematically assess the safety and efficacy of UCB-derived therapy for preterm lung injury in preclinical and clinical studies. METHODS A systematic search of MEDLINE, Embase, CENTRAL, ClinicalTrials.gov, and WHO International Trials Registry Platform was performed. A meta-analysis was conducted with Review Manager (5.4.1) using a random effects model. Data was expressed as standardized mean difference (SMD) for preclinical data and pooled relative risk (RR) for clinical data, with 95% confidence intervals (CI). Potential effect modifiers were investigated via subgroup analysis. Certainty of evidence was assessed using the GRADE system. RESULTS Twenty-three preclinical studies and six clinical studies met eligibility criteria. Statistically significant improvements were seen across several preclinical outcomes, including alveolarization (SMD, 1.32, 95%CI [0.99, 1.65]), angiogenesis (SMD, 1.53, 95%CI [0.87, 2.18]), and anti-inflammatory cytokines (SMD, 1.68, 95%CI [1.03, 2.34]). In clinical studies, 103 preterm infants have received UCB-derived therapy for preterm lung injury and no significant difference was observed in the development of BPD (RR, 0.93, 95%CI [0.73, 1.18]). Across both preclinical and clinical studies, administration of UCB-derived therapy appeared safe. Certainty of evidence was assessed as "low." CONCLUSIONS Administration of UCB-derived therapy was associated with statistically significant improvements across several lung injury markers in preclinical studies. Early clinical studies demonstrated the administration of UCB-derived therapy as safe and feasible but lacked data regarding efficacy.
Collapse
Affiliation(s)
- Elisha Purcell
- Department of Paediatrics, Monash University, VIC 3168, Melbourne, Australia
| | - Jainam Shah
- Department of Paediatrics, Monash University, VIC 3168, Melbourne, Australia
| | - Cameron Powell
- Department of Paediatrics, Monash University, VIC 3168, Melbourne, Australia
| | - Timothy Nguyen
- Department of Paediatrics, Monash University, VIC 3168, Melbourne, Australia
| | - Lindsay Zhou
- Department of Paediatrics, Monash University, VIC 3168, Melbourne, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, VIC 3168, Melbourne, Australia
- Monash Newborn, Monash Children's Hospital, VIC 3168, Melbourne, Australia
| | - Courtney A McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, VIC 3168, Melbourne, Australia
- Department of Obstetrics and Gynaecology, Monash University, VIC 3168, Melbourne, Australia
| | - Beth J Allison
- The Ritchie Centre, Hudson Institute of Medical Research, VIC 3168, Melbourne, Australia
- Department of Obstetrics and Gynaecology, Monash University, VIC 3168, Melbourne, Australia
| | - Atul Malhotra
- Department of Paediatrics, Monash University, VIC 3168, Melbourne, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, VIC 3168, Melbourne, Australia
- Monash Newborn, Monash Children's Hospital, VIC 3168, Melbourne, Australia
| |
Collapse
|
2
|
Song Y, Yang C. Mechanistic advances of hyperoxia-induced immature brain injury. Heliyon 2024; 10:e30005. [PMID: 38694048 PMCID: PMC11058899 DOI: 10.1016/j.heliyon.2024.e30005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024] Open
Abstract
The impact of hyperoxia-induced brain injury in preterm infants is being increasingly investigated. However, the parameters and protocols used to study this condition in animal models lack consistency. Research is further hampered by the fact that hyperoxia exerts both direct and indirect effects on oligodendrocytes and neurons, with the precise underlying mechanisms remaining unclear. In this article, we aim to provide a comprehensive overview of the conditions used to induce hyperoxia in animal models of immature brain injury. We discuss what is known regarding the mechanisms underlying hyperoxia-induced immature brain injury, focusing on the effects on oligodendrocytes and neurons, and briefly describe therapies that may counteract the effects of hyperoxia. We also identify further studies required to fully elucidate the effects of hyperoxia on the immature brain as well as discuss the leading therapeutic options.
Collapse
Affiliation(s)
- Yue Song
- Department of Pediatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
- Department of Clinical Medicine, The Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Changqiang Yang
- Department of Cardiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
- Department of Clinical Medicine, The Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| |
Collapse
|
3
|
Sun T, Yu H, Li D, Zhang H, Fu J. Emerging role of metabolic reprogramming in hyperoxia-associated neonatal diseases. Redox Biol 2023; 66:102865. [PMID: 37659187 PMCID: PMC10480540 DOI: 10.1016/j.redox.2023.102865] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023] Open
Abstract
Oxygen therapy is common during the neonatal period to improve survival, but it can increase the risk of oxygen toxicity. Hyperoxia can damage multiple organs and systems in newborns, commonly causing lung conditions such as bronchopulmonary dysplasia and pulmonary hypertension, as well as damage to other organs, including the brain, gut, and eyes. These conditions are collectively referred to as newborn oxygen radical disease to indicate the multi-system damage caused by hyperoxia. Hyperoxia can also lead to changes in metabolic pathways and the production of abnormal metabolites through a process called metabolic reprogramming. Currently, some studies have analyzed the mechanism of metabolic reprogramming induced by hyperoxia. The focus has been on mitochondrial oxidative stress, mitochondrial dynamics, and multi-organ interactions, such as the lung-gut, lung-brain, and brain-gut axes. In this article, we provide an overview of the major metabolic pathway changes reported in hyperoxia-associated neonatal diseases and explore the potential mechanisms of metabolic reprogramming. Metabolic reprogramming induced by hyperoxia can cause multi-organ metabolic disorders in newborns, including abnormal glucose, lipid, and amino acid metabolism. Moreover, abnormal metabolites may predict the occurrence of disease, suggesting their potential as therapeutic targets. Although the mechanism of metabolic reprogramming caused by hyperoxia requires further elucidation, mitochondria and the gut-lung-brain axis may play a key role in metabolic reprogramming.
Collapse
Affiliation(s)
- Tong Sun
- Department of Pediatics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Danni Li
- Department of Pediatics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - He Zhang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Jianhua Fu
- Department of Pediatics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
4
|
Liu X, Zhang J, Cheng X, Liu P, Feng Q, Wang S, Li Y, Gu H, Zhong L, Chen M, Zhou L. Integrated printed BDNF-stimulated HUCMSCs-derived exosomes/collagen/chitosan biological scaffolds with 3D printing technology promoted the remodelling of neural networks after traumatic brain injury. Regen Biomater 2022; 10:rbac085. [PMID: 36683754 PMCID: PMC9847532 DOI: 10.1093/rb/rbac085] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/23/2022] [Accepted: 10/12/2022] [Indexed: 01/25/2023] Open
Abstract
The restoration of nerve dysfunction after traumatic brain injury (TBI) faces huge challenges due to the limited self-regenerative abilities of nerve tissues. In situ inductive recovery can be achieved utilizing biological scaffolds combined with endogenous human umbilical cord mesenchymal stem cells (HUCMSCs)-derived exosomes (MExos). In this study, brain-derived neurotrophic factor-stimulated HUCMSCs-derived exosomes (BMExos) were composited with collagen/chitosan by 3D printing technology. 3D-printed collagen/chitosan/BMExos (3D-CC-BMExos) scaffolds have excellent mechanical properties and biocompatibility. Subsequently, in vivo experiments showed that 3D-CC-BMExos therapy could improve the recovery of neuromotor function and cognitive function in a TBI model in rats. Consistent with the behavioural recovery, the results of histomorphological tests showed that 3D-CC-BMExos therapy could facilitate the remodelling of neural networks, such as improving the regeneration of nerve fibres, synaptic connections and myelin sheaths, in lesions after TBI.
Collapse
Affiliation(s)
- Xiaoyin Liu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jian Zhang
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Characteristic Medical Center of Chinese People’s Armed Police Force, Tianjin 300162, China
| | - Xu Cheng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610064, China
| | - Peng Liu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qingbo Feng
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shan Wang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuanyou Li
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haoran Gu
- The 947th Hospital of Chinese People’s Liberation Army, Xinjiang Uygur Autonomous Region, Kashgar 844000, China
| | - Lin Zhong
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Miao Chen
- Intensive Care Unit, Traditional Chinese Medicine Hospital of Xinjiang Uyghur Autonomous Region and Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi 830000, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|