1
|
Xie Y, Huang H, Huo Y, Yang W, Li Y, Liu S, Li C. Genome-Wide Profiling of bZIP Transcription Factors and FocbZIP11's Impact on Fusarium TR4 Pathogenicity. Int J Mol Sci 2025; 26:1452. [PMID: 40003918 PMCID: PMC11855148 DOI: 10.3390/ijms26041452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
The basic leucine zipper (bZIP) transcription factor (TF) family performs diverse functions in fungal processes, including vegetative growth, nutrient utilization, stress responses, and invasion. Despite their importance, little is known about the bZIP members in Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), a highly virulent banana pathogen. In this study, we systematically identified 17 bZIPs distributed across 10 Foc TR4 chromosomes and classified them into four types based on their protein sequences. Phylogenetic analysis of fungal bZIP TFs revealed that the FocbZIP proteins cluster into 12 groups shared across fungal species. A cis-element analysis showed that each bZIP promoter contains at least one type of stress response-related element. Furthermore, RNA-seq and RT-qPCR analyses of FocbZIP gene expression patterns demonstrated that these genes may serve distinct roles during infection. Notably, the deletion of FocbZIP11 led to reduced vegetative growth, heightened sensitivity to osmotic, oxidative, and cell wall stresses, and diminished virulence toward banana plantlets. Overall, our findings indicate that FocbZIP11 plays a critical role in growth, abiotic stress responses, and virulence in Foc TR4. This study provides a foundation for the further functional characterization of FocbZIP genes, and FocbZIP11 might serve as a promising target for RNA-based biopesticide control of FWB.
Collapse
Affiliation(s)
- Yanling Xie
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.X.); (H.H.); (Y.H.); (W.Y.); (Y.L.)
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- National Key Laboratory for Tropical Crop Breeding, Sanya 572024, China
| | - Huoqing Huang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.X.); (H.H.); (Y.H.); (W.Y.); (Y.L.)
| | - Yile Huo
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.X.); (H.H.); (Y.H.); (W.Y.); (Y.L.)
| | - Wenlong Yang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.X.); (H.H.); (Y.H.); (W.Y.); (Y.L.)
| | - Yuqing Li
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.X.); (H.H.); (Y.H.); (W.Y.); (Y.L.)
| | - Siwen Liu
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.X.); (H.H.); (Y.H.); (W.Y.); (Y.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Chunyu Li
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.X.); (H.H.); (Y.H.); (W.Y.); (Y.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| |
Collapse
|
2
|
Wang G, Chen B, Zhang X, Du G, Han G, Liu J, Peng Y. The basic leucine zipper domain (bZIP) transcription factor BbYap1 promotes evasion of host humoral immunity and regulates lipid homeostasis contributing to fungal virulence in Beauveria bassiana. mSphere 2024; 9:e0035124. [PMID: 38926907 PMCID: PMC11288043 DOI: 10.1128/msphere.00351-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Basic leucine zipper domain transcription factors (TFs), of which yeast activator protein (Yap) is a significant class, are crucial for the development of sclerotia, the stress response, vegetative growth, and spore adhesion. Nevertheless, nothing is known about how Yap TFs contribute to the pathogenicity of entomopathogenic fungus. In this work, Beauveria bassiana was used to identify and knock out the yeast gene BbYap1, which is similar to Yap. The BbYap1 gene deletion has an impact on lipid homeostasis of B. bassiana; oleic acid, for example, dropped by 95.69%. The BbYap1 mutant exhibited much less virulence and vegetative development in comparison to the wild strain, while demonstrating a greater sensitivity to chemical stress. It is noteworthy that the physiological abnormalities brought on by BbYap1 deletion were largely repaired by the addition of exogenous oleic acid, as seen by the notable increase in insect survival in the blood cavity injection group. Following infection with the BbYap1 mutant, the host exhibits a considerable down-regulation of the expression of β-1,3-glucan recognition protein, gallerimycin, gloverin, and moricin-like protein genes. Likewise, the introduction of exogenous oleic acid markedly increased the host's expression of the aforementioned genes. In summary, BbYap1 regulates cellular enzyme lipid homeostasis and fungal virulence by eluding host humoral defense, which contributes to fungal chemical stress and vegetative development. IMPORTANCE Entomopathogenic fungi (EPF) offer an effective and eco-friendly alternative to curb insect populations in biocontrol strategy. When EPF enter the hemolymph of their host, they encounter a variety of stress reactions, such as immunological and oxidative stress. Basic leucine zipper domain transcription factors, of which yeast activator protein (Yap) is a significant class, have diverse biological functions related to metabolism, development, reproduction, conidiation, stress responses, and pathogenicity. This study demonstrates that BbYap1 of Beauveria bassiana regulates cellular enzyme lipid homeostasis and fungal virulence by eluding host humoral defense, which contributes to fungal chemical stress and vegetative development. These findings offer fresh perspectives for comprehending molecular roles of YAP in EPF.
Collapse
Affiliation(s)
- Guang Wang
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, Yunnan Agricultural University, College of Plant Protection, Kunming, China
| | - Bin Chen
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, Yunnan Agricultural University, College of Plant Protection, Kunming, China
| | - Xu Zhang
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, Yunnan Agricultural University, College of Plant Protection, Kunming, China
| | - Guangzu Du
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, Yunnan Agricultural University, College of Plant Protection, Kunming, China
| | - Guangyu Han
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, Yunnan Agricultural University, College of Plant Protection, Kunming, China
| | - Jing Liu
- Yunnan Key Laboratory of Potato Biology, School of Life Science, Yunnan Normal University, Kunming, China
| | - Yuejin Peng
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, Yunnan Agricultural University, College of Plant Protection, Kunming, China
| |
Collapse
|
3
|
Qin H, Yin W, Luo C, Liu L. The Identification, Characterization, and Functional Analysis of the Sugar Transporter Gene Family of the Rice False Smut Pathogen, Villosiclava virens. Int J Mol Sci 2024; 25:600. [PMID: 38203770 PMCID: PMC10779207 DOI: 10.3390/ijms25010600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
False smut, caused by Villosiclava virens, is becoming increasingly serious in modern rice production systems, leading to yield losses and quality declines. Successful infection requires efficient acquisition of sucrose, abundant in rice panicles, as well as other sugars. Sugar transporters (STPs) may play an important role in this process. STPs belong to a major facilitator superfamily, which consists of large multigenic families necessary to partition sugars between fungal pathogens and their hosts. This study identified and characterized the STP family of V. viren, and further analyzed their gene functions to uncover their roles in interactions with rice. Through genome-wide and systematic bioinformatics analyses, 35 STPs were identified from V.virens and named from VvSTP1 to VvSTP35. Transmembrane domains, gene structures, and conserved motifs of VvSTPs have been identified and characterized through the bioinformatic analysis. In addition, a phylogenetic analysis revealed relationship between VvSTPs and STPs from the other three reference fungi. According to a qRT-PCR and RNA-sequencing analysis, VvSTP expression responded differently to different sole carbon sources and H2O2 treatments, and changed during the pathogenic process, suggesting that these proteins are involved in interactions with rice and potentially functional in pathogenesis. In total, 12 representative VvSTPs were knocked out through genetic recombination in order to analyze their roles in pathogenicity of V. virens. The knock-out mutants of VvSTPs showed little difference in mycelia growth and conidiation, indicating a single gene in this family cannot influence vegetative growth of V. virens. It is clear, however, that these mutants result in a change in infection efficiency in a different way, indicating that VvSTPs play an important role in the pathogenicity of virens. This study is expected to contribute to a better understanding of how host-derived sugars contribute to V. virens pathogenicity.
Collapse
Affiliation(s)
- Huimin Qin
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China;
| | - Weixiao Yin
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Chaoxi Luo
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Lianmeng Liu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China;
| |
Collapse
|
4
|
Zhang XM, Li JT, Xia Y, Shi XQ, Liu XL, Tang M, Tang J, Sun W, Yi Y. Early and Late Transcriptomic and Metabolomic Responses of Rhododendron 'Xiaotaohong' Petals to Infection with Alternaria sp. Int J Mol Sci 2023; 24:12695. [PMID: 37628875 PMCID: PMC10454523 DOI: 10.3390/ijms241612695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
In recent years, petal blight disease caused by pathogens has become increasingly epidemic in Rhododendron. Breeding disease-resistant rhododendron is considered to be a more environmentally friendly strategy than is the use of chemical reagents. In this study, we aimed to investigate the response mechanisms of rhododendron varieties to petal blight, using transcriptomics and metabolomics analyses. Specifically, we monitored changes in gene expression and metabolite accumulation in Rhododendron 'Xiaotaohong' petals infected with the Alternaria sp. strain (MR-9). The infection of MR-9 led to the development of petal blight and induced significant changes in gene transcription. Differentially expressed genes (DEGs) were predominantly enriched in the plant-pathogen interaction pathway. These DEGs were involved in carrying out stress responses, with genes associated with H2O2 production being up-regulated during the early and late stages of infection. Correspondingly, H2O2 accumulation was detected in the vicinity of the blight lesions. In addition, defense-related genes, including PR and FRK, exhibited significant up-regulated expression during the infection by MR-9. In the late stage of the infection, we also observed significant changes in differentially abundant metabolites (DAMs), including flavonoids, alkaloids, phenols, and terpenes. Notably, the levels of euscaphic acid, ganoderol A, (-)-cinchonidine, and theophylline in infected petals were 21.8, 8.5, 4.5, and 4.3 times higher, respectively, compared to the control. Our results suggest that H2O2, defense-related genes, and DAM accumulation are involved in the complex response mechanisms of Rhododendron 'Xiaotaohong' petals to MR-9 infection. These insights provide a deeper understanding of the pathogenesis of petal blight disease and may have practical implications for developing disease-resistant rhododendron varieties.
Collapse
Affiliation(s)
- Xi-Min Zhang
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China; (J.-T.L.); (Y.X.); (X.-Q.S.); (J.T.); (W.S.); (Y.Y.)
- Key Laboratory of Environment Friendly Management on Alpine Rhododendron Diseases and Pests of Institutions of Higher Learning in Guizhou Province, Guizhou Normal University, Guiyang 550025, China;
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
| | - Jie-Ting Li
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China; (J.-T.L.); (Y.X.); (X.-Q.S.); (J.T.); (W.S.); (Y.Y.)
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
| | - Ying Xia
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China; (J.-T.L.); (Y.X.); (X.-Q.S.); (J.T.); (W.S.); (Y.Y.)
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
| | - Xiao-Qian Shi
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China; (J.-T.L.); (Y.X.); (X.-Q.S.); (J.T.); (W.S.); (Y.Y.)
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
| | - Xian-Lun Liu
- Key Laboratory of Environment Friendly Management on Alpine Rhododendron Diseases and Pests of Institutions of Higher Learning in Guizhou Province, Guizhou Normal University, Guiyang 550025, China;
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
| | - Ming Tang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Area of Southwest, Guizhou Normal University, Guiyang 550025, China
| | - Jing Tang
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China; (J.-T.L.); (Y.X.); (X.-Q.S.); (J.T.); (W.S.); (Y.Y.)
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
| | - Wei Sun
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China; (J.-T.L.); (Y.X.); (X.-Q.S.); (J.T.); (W.S.); (Y.Y.)
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
| | - Yin Yi
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China; (J.-T.L.); (Y.X.); (X.-Q.S.); (J.T.); (W.S.); (Y.Y.)
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Area of Southwest, Guizhou Normal University, Guiyang 550025, China
| |
Collapse
|