1
|
Liu S, Amanullah S, An B, Guo Y, Liang X, Liu X, Liu J, Gao Y, Zhao W, Yuan C, Gao M. Uncovering the genetic mechanism of rind color trait in watermelon using fine mapping and comparative transcriptomic analysis. FRONTIERS IN PLANT SCIENCE 2025; 16:1553166. [PMID: 40182543 PMCID: PMC11965938 DOI: 10.3389/fpls.2025.1553166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/17/2025] [Indexed: 04/05/2025]
Abstract
The rind color of watermelon fruit is a significant trait that directly affects consumer acceptability. However, the genetic regulatory mechanisms underlying rind color remain poorly understood. In this study, we crossed two differentiated watermelon lines (K2Q "female parent line with a light green rind" and K2S "male parent line with a dark green rind") and developed segregated F2 mapping populations. The dynamic development of rind color was observed by identifying the critical period for color transformation as occurring between 7 and 14 days after pollination (DAP). Genetic segregation analysis indicated that a single dominant gene regulates the major genetic locus (ClRC) associated with the dark green rind trait. Whole-genome BSA-sequencing (BSA-seq) and fine mapping analysis exposed the delimited ClRC locus to a 37.52 kb region on chromosome 08 (Chr08), comprising five genes. The pairwise sequence comparisons analysis of the parental lines revealed the single major gene (Cla97C08G161570), which encodes a 2-phytyl-1,4-β-naphthoquinone methyltransferase protein, exhibiting one non-synonymous type single nucleotide polymorphism (nsSNP) at candidate site (Chr8:27994761, C-G). The real-time quantitative polymerase chain reaction (RT-qPCR) verified the higher expression level of the K2S line on the 14 DAP than that of the K2Q line. The analysis of comparative transcriptomes (RNA-sequencing) identified a total of 940 differentially expressed genes (DEGs) associated with rind coloration in the two parental lines at three dynamic stages of development (0, 7, and 14 DAP). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed key genes (C01G023430, C04G071470, C09G165830, C07G128820, C08G148460, and C08G155040) that share the same pathway as the Cla97C08G161570 gene and exhibited high levels of differential expression trend. Further, RT-qPCR verified that these genes display the same expression pattern as the Cla97C08G161570 gene, and expression levels in the dark green rind lines were significantly higher than those in the light green rind lines, suggesting the significant role in modulating the pigmentation activity.
Collapse
Affiliation(s)
- Sitong Liu
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Sikandar Amanullah
- Department of Horticultural Science, North Carolina State University, Mountain Horticultural Crops Research and Extension Center, Mills River, NC, United States
| | - Bohan An
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Yu Guo
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Xiaoxue Liang
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
- Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, China
| | - Xiujie Liu
- Qiqihar Agricultural Technology Extension Center, Qiqihar, China
| | - Jixiu Liu
- Qiqihar Agricultural Technology Extension Center, Qiqihar, China
| | - Yue Gao
- Qiqihar Agricultural Technology Extension Center, Qiqihar, China
| | - Wen Zhao
- Qiqihar Agricultural Technology Extension Center, Qiqihar, China
| | - Chengzhi Yuan
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Meiling Gao
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
- Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, China
| |
Collapse
|
2
|
Yang D, Chen H, Zhang Y, Wang Y, Zhai Y, Xu G, Ding Q, Wang M, Zhang QA, Lu X, Yan C. Genome-Wide Identification and Expression Analysis of the Melon Aldehyde Dehydrogenase (ALDH) Gene Family in Response to Abiotic and Biotic Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:2939. [PMID: 39458887 PMCID: PMC11510909 DOI: 10.3390/plants13202939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Through the integration of genomic information, transcriptome sequencing data, and bioinformatics methods, we conducted a comprehensive identification of the ALDH gene family in melon. We explored the impact of this gene family on melon growth, development, and their expression patterns in various tissues and under different stress conditions. Our study discovered a total of 17 ALDH genes spread across chromosomes 1, 2, 3, 4, 5, 7, 8, 11, and 12 in the melon genome. Through a phylogenetic analysis, these genes were classified into 10 distinct subfamilies. Notably, genes within the same subfamily exhibited consistent gene structures and conserved motifs. Our study discovered a pair of fragmental duplications within the melon ALDH gene. Furthermore, there was a noticeable collinearity relationship between the melon's ALDH gene and that of Arabidopsis (12 times), and rice (3 times). Transcriptome data reanalysis revealed that some ALDH genes consistently expressed highly across all tissues and developmental stages, while others were tissue- or stage-specific. We analyzed the ALDH gene's expression patterns under six stress types, namely salt, cold, waterlogged, powdery mildew, Fusarium wilt, and gummy stem blight. The results showed differential expression of CmALDH2C4 and CmALDH11A3 under all stress conditions, signifying their crucial roles in melon growth and stress response. RT-qPCR (quantitative reverse transcription PCR) analysis further corroborated these findings. This study paves the way for future genetic improvements in melon molecular breeding.
Collapse
Affiliation(s)
- Dekun Yang
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei 230001, China (Y.Z.)
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Hefei 230001, China
- Anhui Society for Horticultural Science, Hefei 230001, China
| | - Hongli Chen
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei 230001, China (Y.Z.)
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Hefei 230001, China
- Anhui Society for Horticultural Science, Hefei 230001, China
| | - Yu Zhang
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei 230001, China (Y.Z.)
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Hefei 230001, China
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Yan Wang
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei 230001, China (Y.Z.)
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Hefei 230001, China
| | - Yongqi Zhai
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei 230001, China (Y.Z.)
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Hefei 230001, China
| | - Gang Xu
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei 230001, China (Y.Z.)
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Hefei 230001, China
| | - Qiangqiang Ding
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei 230001, China (Y.Z.)
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Hefei 230001, China
| | - Mingxia Wang
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei 230001, China (Y.Z.)
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Hefei 230001, China
| | - Qi-an Zhang
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei 230001, China (Y.Z.)
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Hefei 230001, China
| | - Xiaomin Lu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Congsheng Yan
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei 230001, China (Y.Z.)
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Hefei 230001, China
| |
Collapse
|
3
|
Yang S, Amanullah S, Duan Y, Guo Y, Xu M, Bao X, An B, Yuan C, Liu X, Liu J, Gao Y, Zhao W, Li X, Gao M. Fine genetic mapping and transcriptomic analysis revealed major gene modulating the clear stripe margin pattern of watermelon peel. FRONTIERS IN PLANT SCIENCE 2024; 15:1462141. [PMID: 39297011 PMCID: PMC11409187 DOI: 10.3389/fpls.2024.1462141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/12/2024] [Indexed: 09/21/2024]
Abstract
The peel stripe margin pattern is one of the most important quality traits of watermelon. In this study, two contrasted watermelon lines [slb line (P1) with a clear peel stripe margin pattern and GWAS-38 line (P2) with a blurred peel stripe margin pattern] were crossed, and biparental F2 mapping populations were developed. Genetic segregation analysis revealed that a single recessive gene is modulating the main-effect genetic locus (Clcsm) of the clear stripe margin pattern of peel. Bulked segregant analysis-based sequencing (BSA-Seq) and fine genetic mapping exposed the delimited Clcsm locus to a 19.686-kb interval on chromosome 6, and the Cla97C06G126680 gene encoding the MYB transcription factor family was identified. The gene mutation analysis showed that two non-synonymous single-nucleotide polymorphism (nsSNP) sites [Chr6:28438793 (A-T) and Chr6:28438845 (A-C)] contribute to the clear peel stripe margin pattern, and quantitative real-time polymerase chain reaction (qRT-PCR) also showed a higher expression trend in the slb line than in the GWAS-38 line. Further, comparative transcriptomic analysis identified major differentially expressed genes (DEGs) in three developmental periods [4, 12, and 20 days after pollination (DAP)] of both parental lines. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses indicated highly enriched DEGs involved in metabolic processes and catalytic activity. A total of 44 transcription factor families and candidate genes belonging to the ARR-B transcription factor family are believed to regulate the clear stripe margin trait of watermelon peel. The gene structure, sequence polymorphism, and expression trends depicted significant differences in the peel stripe margin pattern of both parental lines. The ClMYB36 gene showed a higher expression trend for regulating the clear peel stripe margin of the slb line, and the ClAPRR5 gene depicted a higher expression for modulating the blurred peel stripe margin in the GWAS-38 line. Overall, our fine genetic mapping and transcriptomic analysis revealed candidate genes differentiating the clear and blurred peel stripe patterns of watermelon fruit.
Collapse
Affiliation(s)
- Shao Yang
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Sikandar Amanullah
- Department of Horticultural Science, North Carolina State University, Mountain Horticultural Crops Research and Extension Center, Mills River, NC, United States
| | - Yaru Duan
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Yu Guo
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Ming Xu
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Xiuping Bao
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Bohan An
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Chengzhi Yuan
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Xiujie Liu
- Qiqihar Agricultural Technology Extension Center, Qiqihar, China
| | - Jixiu Liu
- Qiqihar Agricultural Technology Extension Center, Qiqihar, China
| | - Yue Gao
- Qiqihar Agricultural Technology Extension Center, Qiqihar, China
| | - Wen Zhao
- Qiqihar Agricultural Technology Extension Center, Qiqihar, China
| | - Xinyuan Li
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Meiling Gao
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
- Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, China
| |
Collapse
|
4
|
Ni H, Song R, Liu B, Hu H, Liu J, Wang Q, Wang R, Mao P, Jia S. Temporal dynamics of chloroplast biogenesis revealed initiation of photosynthesis-related gene expression and protein complexes during alfalfa seed germination. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108868. [PMID: 38917738 DOI: 10.1016/j.plaphy.2024.108868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/02/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
The chloroplast biogenesis occurs in cotyledon during alfalfa seed germination before true leaf formation, and is extremely important for the followed plant development and growth. In this study, we conducted a simulation of alfalfa seed germination in the soil by using tin foil and focused on 10 pivotal time points of chloroplast biogenesis in cotyledons before and after light exposure, which showed significant differences in multispectral images, and covered the whole process of chloroplast biogenesis from proplastid, etioplast to mature chloroplast. We revealed three phases that referred to the programmed involvements of photosynthesis promotion, ultrastructure maturity, transcriptomic expression, and protein complex construction, and observed distinct transcriptional expressions of genes from nuclear and chloroplast genomes. In phase I at dark germination before light exposure, chloroplast-encoded genes showed up-regulated expressions together with the importation of chloroplast proteins. In phase II for the first day after light exposure, nuclear-encoded genes' expressions were initiated at 2 h after light exposure (E2h), followed by swift assembly of chloroplast thylakoid membrane protein complexes, and roaring Fv/Fm and contents of chlorophyll a, chlorophyll b and carotenoid. The initiation at E2h was pronounced by the observation of gradual accumulation of single lamella, and facilitated the formation of granum stacks (thylakoid) at E8h in phase II. In phase III from the second day after light exposure, chloroplast became gradually complete with the fully established photosynthetic capacity. Altogether, our results layed a theoretical foundation for enhancing potential photosynthetic efficiency in alfalfa and related species.
Collapse
Affiliation(s)
- Haoran Ni
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Rui Song
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Bei Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hao Hu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Junze Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qing Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Run Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Peisheng Mao
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
5
|
Yang T, Amanullah S, Li S, Gao P, Bai J, Li C, Ma J, Luan F, Wang X. Deciphering the Genomic Characterization of the GGP Gene Family and Expression Verification of CmGGP1 Modulating Ascorbic Acid Biosynthesis in Melon Plants. Antioxidants (Basel) 2024; 13:397. [PMID: 38671845 PMCID: PMC11047344 DOI: 10.3390/antiox13040397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Ascorbic acid (AsA), also known as vitamin C, is a well-known antioxidant found in living entities that plays an essential role in growth and development, as well as in defensive mechanisms. GDP-L-galactose phosphorylase (GGP) is a candidate gene regulating AsA biosynthesis at the translational and transcriptional levels in plants. In the current study, we conducted genome-wide bioinformatic analysis and pinpointed a single AsA synthesis rate-limiting enzyme gene in melon (CmGGP1). The protein prediction analysis depicted that the CmGGP1 protein does not have a signaling peptide or transmembrane structure and mainly functions in the chloroplast or nucleus. The constructed phylogenetic tree analysis in multispecies showed that the CmGGP1 protein has a highly conserved motif in cucurbit crops. The structural variation analysis of the CmGGP1 gene in different domesticated melon germplasms showed a single non-synonymous type-base mutation and indicated that this gene was selected by domestication during evolution. Wild-type (WT) and landrace (LDR) germplasms of melon depicted close relationships to each other, and improved-type (IMP) varieties showed modern domestication selection. The endogenous quantification of AsA content in both the young and old leaves of nine melon varieties exhibited the major differentiations for AsA synthesis and metabolism. The real-time quantitative polymerase chain reaction (qRT-PCR) analysis of gene co-expression showed that AsA biosynthesis in leaves was greater than AsA metabolic consumption, and four putative interactive genes (MELO3C025552.2, MELO3C007440.2, MELO3C023324.2, and MELO3C018576.2) associated with the CmGGP1 gene were revealed. Meanwhile, the CmGGP1 gene expression pattern was noticed to be up-regulated to varying degrees in different acclimated melons. We believe that the obtained results would provide useful insights for an in-depth genetic understanding of the AsA biosynthesis mechanism, aimed at the development of improving crop plants for melon.
Collapse
Affiliation(s)
- Tiantian Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (T.Y.); (S.L.); (P.G.); (J.B.); (C.L.); (F.L.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Sikandar Amanullah
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (T.Y.); (S.L.); (P.G.); (J.B.); (C.L.); (F.L.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Shenglong Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (T.Y.); (S.L.); (P.G.); (J.B.); (C.L.); (F.L.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Peng Gao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (T.Y.); (S.L.); (P.G.); (J.B.); (C.L.); (F.L.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Junyu Bai
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (T.Y.); (S.L.); (P.G.); (J.B.); (C.L.); (F.L.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Chang Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (T.Y.); (S.L.); (P.G.); (J.B.); (C.L.); (F.L.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Jie Ma
- Bayannur Institute of Agriculture and Animal Husbandry Science, Inner Mongolia Autonomous Region, Bayannur 015000, China;
| | - Feishi Luan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (T.Y.); (S.L.); (P.G.); (J.B.); (C.L.); (F.L.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Xuezheng Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (T.Y.); (S.L.); (P.G.); (J.B.); (C.L.); (F.L.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| |
Collapse
|
6
|
Zhan J, Zhong J, Cheng J, Wang Y, Hu K. Map-based cloning of the APRR2 gene controlling green stigma in bitter gourd ( Momordica charantia). FRONTIERS IN PLANT SCIENCE 2023; 14:1128926. [PMID: 37235005 PMCID: PMC10208069 DOI: 10.3389/fpls.2023.1128926] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/20/2023] [Indexed: 05/28/2023]
Abstract
Bitter gourd is an economically important vegetable and medicinal crop distinguished by its bitter fruits. Its stigma color is widely used to assess the distinctiveness, uniformity, and stability of bitter gourd varieties. However, limited researches have been dedicated to genetic basis of its stigma color. In this study, we employed bulked segregant analysis (BSA) sequencing to identify a single dominant locus McSTC1 located on pseudochromosome 6 through genetic mapping of an F2 population (n =241) derived from the cross between green and yellow stigma parental lines. An F2-derived F3 segregation population (n = 847) was further adopted for fine mapping, which delimited the McSTC1 locus to a 13.87 kb region containing one predicted gene McAPRR2 (Mc06g1638), a homolog of the Arabidopsis two-component response regulator-like gene AtAPRR2. Sequence alignment analysis of McAPRR2 revealed that a 15 bp insertion at exon 9 results in a truncated GLK domain of its encoded protein, which existed in 19 bitter gourd varieties with yellow stigma. A genome-wide synteny search of the bitter gourd McAPRR2 genes in Cucurbitaceae family revealed its close relationship with other cucurbits APRR2 genes that are corresponding to white or light green fruit skin. Our findings provide insights into the molecular marker-assisted breeding of bitter gourd stigma color and the mechanism of gene regulation for stigma color.
Collapse
Affiliation(s)
- Jinyi Zhan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jian Zhong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jiaowen Cheng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yuhui Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Kailin Hu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|