1
|
Sadava D, Chen S. Molecular Interactions of the Plant Steroid Hormone Epibrassinolide on Human Drug-Sensitive and Drug-Resistant Small-Cell Lung Carcinoma Cells. Cancers (Basel) 2024; 16:3812. [PMID: 39594767 PMCID: PMC11592510 DOI: 10.3390/cancers16223812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Small-cell lung cancer (SCLC) has a poor prognosis because it is often diagnosed after it has spread and develops multi-drug resistance. Epibrassinolide (EB) is a plant steroid hormone with widespread distribution and physiological effects. In plants, EB-activated gene expression occurs via a GSK-mediated signaling pathway, similar to Wnt-β-catenin signaling in animal cells that is elevated in cancer cells. Methods: This mechanistic parallel prompted investigations of the molecular interactions of EB on drug-sensitive (H69) and multi-drug-resistant (VPA) SCLC cells. Cellular and molecular investigations were performed. Results: Pharmacologic interactions between EB and the Wnt signaling inhibitors IGC-011 and PRI-724 were determined by the combination index method and showed antagonism, indicating that EB acts on the same pathway as these inhibitors. Following incubation of drug-sensitive and drug-resistant SCLC cells with EB, there was a reduction in β-catenin (e.g., 3.8 to 0.7 pg/µg protein), accompanied by a reduction in β-catenin promoter activity, measured by firefly luciferase-coupled promoter element transfection. Cellular β-catenin concentration is regulated by the active form of GSK3β. In Wnt signaling, active GSK3β is converted to inactive pGSK3β, thereby increasing the concentration of β-catenin. After incubation of SCLC cells with EB, there was a reduction in the inactive form (pGSK3β) and a relative increase in the active form (GSK3β). In vitro enzyme assays showed that EB did not inhibit purified GSK3β, but there was non-competitive inhibition when SCLC cell extracts were used as the source of enzyme. This indirect inhibition by EB indicates that it may act on the Wnt pathway by blocking the phosphorylation of GSK3β. The protein levels of three SCLC tumor markers, namely, NSE, CAV1, and MYCL1, were elevated in drug-resistant SCLC cells. EB incubation led to a significant reduction in the levels of the three markers. Two major effects of EB on SCLC cells are the promotion of apoptosis and the reversal of drug resistance. Transcriptional analyses showed that after exposure of SCLC cells to EB, there were increases in the expression of genes encoding apoptotic inducers (e.g., BAX and FAS) and effectors (e.g., CASP3) and reductions in the expression of genes encoding apoptosis inhibitors (e.g., survivin). PGP1 and MRP1, two membrane efflux pumps expressed in SCLC cells, were elevated in drug-resistant cells, but EB incubation did not affect these protein levels. Cellular assays of drug efflux by PGP1 showed an increase in drug-resistant cells, but EB did not alter efflux activity. Following exposure to human liver microsomes, EB was metabolized by NADPH-dependent oxidation and UDPG-dependent glucuronidation, as evidenced by the elimination of EB cytotoxicity against SCLC cells. Conclusions: Taken together, these data indicate that EB, a steroid hormone in plants consumed in the human diet, is pharmacologically active in drug-sensitive and drug-resistant SCLC cells in the Wnt signaling pathway, alters apoptotic gene expression, and is a substrate for microsomal modifications.
Collapse
Affiliation(s)
- David Sadava
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | | |
Collapse
|
2
|
Ojosnegros S, Alvarez JM, Gagliardini V, Quintanilla LG, Grossniklaus U, Fernández H. Transcriptomic analyses in the gametophytes of the apomictic fern Dryopteris affinis. PLANTA 2024; 260:111. [PMID: 39356333 PMCID: PMC11447071 DOI: 10.1007/s00425-024-04540-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/21/2024] [Indexed: 10/03/2024]
Abstract
MAIN CONCLUSION A novel genomic map of the apogamous gametophyte of the fern Dryopteris affinis unlocks oldest hindrance with this complex plant group, to gain insight into evo-devo approaches. The gametophyte of the fern Dryopteris affinis ssp. affinis represents a good model to explore the molecular basis of vegetative and reproductive development, as well as stress responses. Specifically, this fern reproduces asexually by apogamy, a peculiar case of apomixis whereby a sporophyte forms directly from a gametophytic cell without fertilization. Using RNA-sequencing approach, we have previously annotated more than 6000 transcripts. Here, we selected 100 of the inferred proteins homolog to those of Arabidopsis thaliana, which were particularly interesting for a detailed study of their potential functions, protein-protein interactions, and distance trees. As expected, a plethora of proteins associated with gametogenesis and embryogenesis in angiosperms, such as FERONIA (FER) and CHROMATING REMODELING 11 (CHR11) were identified, and more than a dozen candidates potentially involved in apomixis, such as ARGONAUTE family (AGO4, AGO9, and AGO 10), BABY BOOM (BBM), FASCIATED STEM4 (FAS4), FERTILIZATION-INDEPENDENT ENDOSPERM (FIE), and MATERNAL EFFECT EMBRYO ARREST29 (MEE29). In addition, proteins involved in the response to biotic and abiotic stresses were widely represented, as shown by the enrichment of heat-shock proteins. Using the String platform, the interactome revealed that most of the protein-protein interactions were predicted based on experimental, database, and text mining datasets, with MULTICOPY SUPPRESSOR OF IRA4 (MSI4) showing the highest number of interactions: 16. Lastly, some proteins were studied through distance trees by comparing alignments with respect to more distantly or closely related plant groups. This analysis identified DCL4 as the most distant protein to the predicted common ancestor. New genomic information in relation to gametophyte development, including apomictic reproduction, could expand our current vision of evo-devo approaches.
Collapse
Affiliation(s)
- Sara Ojosnegros
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33071, Oviedo, Spain
| | - José Manuel Alvarez
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33071, Oviedo, Spain
| | - Valeria Gagliardini
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, 8008, Zurich, Switzerland
| | - Luis G Quintanilla
- Global Change Research Institute, University Rey Juan Carlos, 28933, Móstoles, Spain
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, 8008, Zurich, Switzerland
| | - Helena Fernández
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33071, Oviedo, Spain.
| |
Collapse
|
3
|
Schmidt V, Skokan R, Depaepe T, Kurtović K, Haluška S, Vosolsobě S, Vaculíková R, Pil A, Dobrev PI, Motyka V, Van Der Straeten D, Petrášek J. Phytohormone profiling in an evolutionary framework. Nat Commun 2024; 15:3875. [PMID: 38719800 PMCID: PMC11079000 DOI: 10.1038/s41467-024-47753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
The genomes of charophyte green algae, close relatives of land plants, typically do not show signs of developmental regulation by phytohormones. However, scattered reports of endogenous phytohormone production in these organisms exist. We performed a comprehensive analysis of multiple phytohormones in Viridiplantae, focusing mainly on charophytes. We show that auxin, salicylic acid, ethylene and tRNA-derived cytokinins including cis-zeatin are found ubiquitously in Viridiplantae. By contrast, land plants but not green algae contain the trans-zeatin type cytokinins as well as auxin and cytokinin conjugates. Charophytes occasionally produce jasmonates and abscisic acid, whereas the latter is detected consistently in land plants. Several phytohormones are excreted into the culture medium, including auxin by charophytes and cytokinins and salicylic acid by Viridiplantae in general. We note that the conservation of phytohormone biosynthesis and signaling pathways known from angiosperms does not match the capacity for phytohormone biosynthesis in Viridiplantae. Our phylogenetically guided analysis of established algal cultures provides an important insight into phytohormone biosynthesis and metabolism across Streptophyta.
Collapse
Affiliation(s)
- Vojtěch Schmidt
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia
- Department of Experimental Plant Biology, Charles University, Viničná 5, 128 44, Prague 2, Czechia
| | - Roman Skokan
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia.
| | - Thomas Depaepe
- Laboratory of Functional Plant Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium
| | - Katarina Kurtović
- Department of Experimental Plant Biology, Charles University, Viničná 5, 128 44, Prague 2, Czechia
| | - Samuel Haluška
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia
- Department of Experimental Plant Biology, Charles University, Viničná 5, 128 44, Prague 2, Czechia
| | - Stanislav Vosolsobě
- Department of Experimental Plant Biology, Charles University, Viničná 5, 128 44, Prague 2, Czechia
| | - Roberta Vaculíková
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia
| | - Anthony Pil
- Laboratory of Functional Plant Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium
| | - Petre Ivanov Dobrev
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia
| | - Václav Motyka
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium
| | - Jan Petrášek
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia.
- Department of Experimental Plant Biology, Charles University, Viničná 5, 128 44, Prague 2, Czechia.
| |
Collapse
|
4
|
Liu J, Li W, Wu G, Ali K. An update on evolutionary, structural, and functional studies of receptor-like kinases in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1305599. [PMID: 38362444 PMCID: PMC10868138 DOI: 10.3389/fpls.2024.1305599] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/03/2024] [Indexed: 02/17/2024]
Abstract
All living organisms must develop mechanisms to cope with and adapt to new environments. The transition of plants from aquatic to terrestrial environment provided new opportunities for them to exploit additional resources but made them vulnerable to harsh and ever-changing conditions. As such, the transmembrane receptor-like kinases (RLKs) have been extensively duplicated and expanded in land plants, increasing the number of RLKs in the advanced angiosperms, thus becoming one of the largest protein families in eukaryotes. The basic structure of the RLKs consists of a variable extracellular domain (ECD), a transmembrane domain (TM), and a conserved kinase domain (KD). Their variable ECDs can perceive various kinds of ligands that activate the conserved KD through a series of auto- and trans-phosphorylation events, allowing the KDs to keep the conserved kinase activities as a molecular switch that stabilizes their intracellular signaling cascades, possibly maintaining cellular homeostasis as their advantages in different environmental conditions. The RLK signaling mechanisms may require a coreceptor and other interactors, which ultimately leads to the control of various functions of growth and development, fertilization, and immunity. Therefore, the identification of new signaling mechanisms might offer a unique insight into the regulatory mechanism of RLKs in plant development and adaptations. Here, we give an overview update of recent advances in RLKs and their signaling mechanisms.
Collapse
Affiliation(s)
| | | | - Guang Wu
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Khawar Ali
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
5
|
Zhang Y, Van de Peer Y, Lu B, Zhang S, Che J, Chen J, Marchal K, Yang X. Expression divergence of expansin genes drive the heteroblasty in Ceratopteris chingii. BMC Biol 2023; 21:244. [PMID: 37926805 PMCID: PMC10626718 DOI: 10.1186/s12915-023-01743-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Sterile-fertile heteroblasty is a common phenomenon observed in ferns, where the leaf shape of a fern sporophyll, responsible for sporangium production, differs from that of a regular trophophyll. However, due to the large size and complexity of most fern genomes, the molecular mechanisms that regulate the formation of these functionally different heteroblasty have remained elusive. To shed light on these mechanisms, we generated a full-length transcriptome of Ceratopteris chingii with PacBio Iso-Seq from five tissue samples. By integrating Illumina-based sequencing short reads, we identified the genes exhibiting the most significant differential expression between sporophylls and trophophylls. RESULTS The long reads were assembled, resulting in a total of 24,024 gene models. The differential expressed genes between heteroblasty primarily involved reproduction and cell wall composition, with a particular focus on expansin genes. Reconstructing the phylogeny of expansin genes across 19 plant species, ranging from green algae to seed plants, we identified four ortholog groups for expansins. The observed high expression of expansin genes in the young sporophylls of C. chingii emphasizes their role in the development of heteroblastic leaves. Through gene coexpression analysis, we identified highly divergent expressions of expansin genes both within and between species. CONCLUSIONS The specific regulatory interactions and accompanying expression patterns of expansin genes are associated with variations in leaf shapes between sporophylls and trophophylls.
Collapse
Affiliation(s)
- Yue Zhang
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0028, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bei Lu
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sisi Zhang
- Wuhan Institute of Landscape Architecture, Wuhan, 430081, China
| | - Jingru Che
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinming Chen
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| | - Kathleen Marchal
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
- Department of Information Technology, IDLab, IMEC, Ghent University, 9052, Ghent, Belgium.
| | - Xingyu Yang
- Wuhan Institute of Landscape Architecture, Wuhan, 430081, China.
- Hubei Ecology Polytechnic College, Wuhan, 430200, China.
| |
Collapse
|
6
|
Coiro M, Roberts EA, Hofmann CC, Seyfullah LJ. Cutting the long branches: Consilience as a path to unearth the evolutionary history of Gnetales. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1082639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Gnetales are one of the most fascinating groups within seed plants. Although the advent of molecular phylogenetics has generated some confidence in their phylogenetic placement of Gnetales within seed plants, their macroevolutionary history still presents many unknowns. Here, we review the reasons for such unknowns, and we focus the discussion on the presence of “long branches” both in their molecular and morphological history. The increased rate of molecular evolution and genome instability as well as the numerous unique traits (both reproductive and vegetative) in the Gnetales have been obstacles to a better understanding of their evolution. Moreover, the fossil record of the Gnetales, though relatively rich, has not yet been properly reviewed and investigated using a phylogenetic framework. Despite these apparent blocks to progress we identify new avenues to enable us to move forward. We suggest that a consilience approach, involving different disciplines such as developmental genetics, paleobotany, molecular phylogenetics, and traditional anatomy and morphology might help to “break” these long branches, leading to a deeper understanding of this mysterious group of plants.
Collapse
|
7
|
Two Conserved Amino Acids Characterized in the Island Domain Are Essential for the Biological Functions of Brassinolide Receptors. Int J Mol Sci 2022; 23:ijms231911454. [PMID: 36232750 PMCID: PMC9570414 DOI: 10.3390/ijms231911454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Brassinosteroids (BRs) play important roles in plant growth and development, and BR perception is the pivotal process required to trigger BR signaling. In angiosperms, BR insensitive 1 (BRI1) is the essential BR receptor, because its mutants exhibit an extremely dwarf phenotype in Arabidopsis. Two other BR receptors, BRI1-like 1 (BRL1) and BRI1-like 3 (BRL3), are shown to be not indispensable. All BR receptors require an island domain (ID) responsible for BR perception. However, the biological functional significance of residues in the ID remains unknown. Based on the crystal structure and sequence alignments analysis of BR receptors, we identified two residues 597 and 599 of AtBRI1 that were highly conserved within a BR receptor but diversified among different BR receptors. Both of these residues are tyrosine in BRI1, while BRL1/BRL3 fixes two phenylalanines. The experimental findings revealed that, except BRI1Y597F and BRI1Y599F, substitutions of residues 597 and 599 with the remaining 18 amino acids differently impaired BR signaling and, surprisingly, BRI1Y599F showed a weaker phenotype than BRI1Y599 did, implying that these residues were the key sites to differentiate BR receptors from a non-BR receptor, and the essential BR receptor BRI1 from BRL1/3, which possibly results from positive selection via gain of function during evolution.
Collapse
|