1
|
Blomme J, Arraiza Ribera J, De Clerck O, Jacobs TB. Consolidating Ulva functional genomics: gene editing and new selection systems. THE NEW PHYTOLOGIST 2025; 246:1710-1723. [PMID: 40088038 DOI: 10.1111/nph.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/21/2025] [Indexed: 03/17/2025]
Abstract
The green seaweed Ulva compressa is a promising model for functional biology. In addition to historical research on growth and development, -omics data and molecular tools for stable transformation are available. However, more efficient tools are needed to study gene function. Here, we expand the molecular toolkit for Ulva. We screened the survival of Ulva and its mutualistic bacteria on 14 selective agents and established that Blasticidin deaminases (BSD or bsr) can be used as selectable markers to generate stable transgenic lines. We show that Cas9 and Cas12a RNPs are suitable for targeted mutagenesis and can generate genomic deletions of up to 20 kb using the marker gene ADENINE PHOSPHORIBOSYLTRANSFERASE (APT). We demonstrate that the targeted insertion of a selectable marker via homology-directed repair or co-editing with APT is possible for nonmarker genes. We evaluated 31 vector configurations and found that the bicistronic fusion of Cas9 to a resistance marker or the incorporation of introns in Cas9 led to the most mutants. We used this to generate mutants in three nonmarker genes using a co-editing strategy. This expanded molecular toolkit now enables us to reliably make gain- and loss-of-function mutants; additional optimizations will be necessary to allow for vector-based multiplex genome editing in Ulva.
Collapse
Affiliation(s)
- Jonas Blomme
- Department of Biology, Phycology Research Group, Ghent University, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Júlia Arraiza Ribera
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Olivier De Clerck
- Department of Biology, Phycology Research Group, Ghent University, 9052, Ghent, Belgium
| | - Thomas B Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| |
Collapse
|
2
|
Zhang M, Zhao X, Ren X. Research Progress on the Mechanisms of Algal-Microorganism Symbiosis in Enhancing Large-Scale Lipid Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6345-6360. [PMID: 40045656 DOI: 10.1021/acs.jafc.4c11580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Microalgae, characterized by their exceptional lipid content, rapid growth, and robust adaptability, represent a promising biological resource. In natural and engineered ecosystems, microalgae engage in intricate symbiotic relationships with diverse microorganisms, a dynamic interplay essential for ecological resilience and metabolic optimization. This review examines the role of symbiotic microorganisms in microalgal growth and lipid accumulation, with particular emphasis on the biological regulatory mechanisms that govern these processes. These include nutrient exchange, phytohormone-mediated growth stimulation, cofactors, and quorum-sensing-driven community coordination. The review highlights how these microbial interactions facilitate optimal lipid production by enhancing metabolic pathways, thereby improving the efficiency of lipid accumulation in microalgae. Furthermore, the review investigates horizontal gene transfer as an evolutionary driver that fortifies algal-microbial consortia against environmental stressors, enabling robust performance in fluctuating conditions. The integration of these biological insights holds transformative potential for advancing next-generation bioenergy platforms, where algal-microbial systems could play a pivotal role in enhancing biofuel production, wastewater treatment, and sustainable agriculture.
Collapse
Affiliation(s)
- Meiyu Zhang
- Food & Medicine Homology and Chinese Medicine Health Science Institute, International Cooperative Joint Laboratory for Marine Microbial Cell Factories, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Xinhe Zhao
- Food & Medicine Homology and Chinese Medicine Health Science Institute, International Cooperative Joint Laboratory for Marine Microbial Cell Factories, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Xiaojie Ren
- Food & Medicine Homology and Chinese Medicine Health Science Institute, International Cooperative Joint Laboratory for Marine Microbial Cell Factories, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
3
|
Romero S, González A, Osorio H, Segura R, Moenne A. Copper Is Accumulated as Copper Sulfide Particles, and Not Bound to Glutathione, Phytochelatins or Metallothioneins, in the Marine Alga Ulva compressa (Chlorophyta). Int J Mol Sci 2024; 25:7632. [PMID: 39062874 PMCID: PMC11277147 DOI: 10.3390/ijms25147632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
To analyze the mechanism of copper accumulation in the marine alga Ulva compressa, it was cultivated with 10 μM of copper, with 10 μM of copper and increasing concentrations of a sulfide donor (NaHS) for 0 to 7 days, and with 10 μM of copper and a concentration of the sulfide acceptor (hypotaurine) for 5 days. The level of intracellular copper was determined as well as the level of glutathione (GSH) and phytochelatins (PCs) and the expression of metallothioneins (UcMTs). The level of intracellular copper in the algae treated with copper increased at day 1, slightly increased until day 5 and remained unchanged until day 7. The level of copper in the algae cultivated with copper and 100 or 200 μM of NaHS continuously increased until day 7 and the copper level was higher in the algae cultivated with 200 μM of NaHS compared to 100 μM of NaHS. In contrast, the level of intracellular copper decreased in the algae treated with copper and hypotaurine. The level of intracellular copper did not correlate with the level of GSH or with the expression of UcMTs, and PCs were not detected in response to copper, or copper and NaHS. Algae treated with copper and with copper and 200 μM of NaHS for 5 days were visualized by TEM and the elemental composition of electrondense particles was analyzed by EDXS. The algae treated with copper showed electrondense particles containing copper and sulfur, but not nitrogen, and they were mainly located in the chloroplast, but also in the cytoplasm. The algae treated with copper and NaHS showed a higher level of electrondense particles containing copper and sulfur, but not nitrogen, and they were located in the chloroplast, and in the cytoplasm. Thus, copper is accumulated as copper sulfide insoluble particles, and not bound to GSH, PCs or UcMTs, in the marine alga U. compressa.
Collapse
Affiliation(s)
- Stephanie Romero
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda 3363, Santiago 917022, Chile; (S.R.); (A.G.); (H.O.)
| | - Alberto González
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda 3363, Santiago 917022, Chile; (S.R.); (A.G.); (H.O.)
| | - Héctor Osorio
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda 3363, Santiago 917022, Chile; (S.R.); (A.G.); (H.O.)
| | - Rodrigo Segura
- Laboratory of Inorganic Chemistry, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda 3363, Santiago 917022, Chile;
| | - Alejandra Moenne
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda 3363, Santiago 917022, Chile; (S.R.); (A.G.); (H.O.)
| |
Collapse
|
4
|
De Saeger J, Coulembier Vandelannoote E, Lee H, Park J, Blomme J. Genome editing in macroalgae: advances and challenges. Front Genome Ed 2024; 6:1380682. [PMID: 38516199 PMCID: PMC10955705 DOI: 10.3389/fgeed.2024.1380682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 03/23/2024] Open
Abstract
This minireview examines the current state and challenges of genome editing in macroalgae. Despite the ecological and economic significance of this group of organisms, genome editing has seen limited applications. While CRISPR functionality has been established in two brown (Ectocarpus species 7 and Saccharina japonica) and one green seaweed (Ulva prolifera), these studies are limited to proof-of-concept demonstrations. All studies also (co)-targeted ADENINE PHOSPHORIBOSYL TRANSFERASE to enrich for mutants, due to the relatively low editing efficiencies. To advance the field, there should be a focus on advancing auxiliary technologies, particularly stable transformation, so that novel editing reagents can be screened for their efficiency. More work is also needed on understanding DNA repair in these organisms, as this is tightly linked with the editing outcomes. Developing efficient genome editing tools for macroalgae will unlock the ability to characterize their genes, which is largely uncharted terrain. Moreover, given their economic importance, genome editing will also impact breeding campaigns to develop strains that have better yields, produce more commercially valuable compounds, and show improved resilience to the impacts of global change.
Collapse
Affiliation(s)
- Jonas De Saeger
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, Yeonsu-gu, Republic of Korea
| | - Emma Coulembier Vandelannoote
- Department of Biology, Phycology Research Group, Ghent University, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Hojun Lee
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, Yeonsu-gu, Republic of Korea
| | - Jihae Park
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, Yeonsu-gu, Republic of Korea
| | - Jonas Blomme
- Department of Biology, Phycology Research Group, Ghent University, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
5
|
Domozych DS, LoRicco JG. The extracellular matrix of green algae. PLANT PHYSIOLOGY 2023; 194:15-32. [PMID: 37399237 PMCID: PMC10762512 DOI: 10.1093/plphys/kiad384] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 07/05/2023]
Abstract
Green algae display a wide range of extracellular matrix (ECM) components that include various types of cell walls (CW), scales, crystalline glycoprotein coverings, hydrophobic compounds, and complex gels or mucilage. Recently, new information derived from genomic/transcriptomic screening, advanced biochemical analyses, immunocytochemical studies, and ecophysiology has significantly enhanced and refined our understanding of the green algal ECM. In the later diverging charophyte group of green algae, the CW and other ECM components provide insight into the evolution of plants and the ways the ECM modulates during environmental stress. Chlorophytes produce diverse ECM components, many of which have been exploited for various uses in medicine, food, and biofuel production. This review highlights major advances in ECM studies of green algae.
Collapse
Affiliation(s)
- David S Domozych
- Department of Biology, Skidmore College, Saratoga Springs, NY 12866, USA
| | | |
Collapse
|
6
|
Huang F, Qiao X, Mei S, Zhang C, Jiang C. Analysis of non-coding small RNA similarity/sharing between plant and animal genomes. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2437-2440. [PMID: 37481687 DOI: 10.1007/s11427-022-2373-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 05/17/2023] [Indexed: 07/24/2023]
Affiliation(s)
- Fengming Huang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Xiangyu Qiao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Song Mei
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Cong Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Chengyu Jiang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
7
|
Blomme J, Wichard T, Jacobs TB, De Clerck O. Ulva: An emerging green seaweed model for systems biology. JOURNAL OF PHYCOLOGY 2023. [PMID: 37256696 DOI: 10.1111/jpy.13341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023]
Abstract
Green seaweeds exhibit a wide range of morphologies and occupy various ecological niches, spanning from freshwater to marine and terrestrial habitats. These organisms, which predominantly belong to the class Ulvophyceae, showcase a remarkable instance of parallel evolution toward complex multicellularity and macroscopic thalli in the Viridiplantae lineage. Within the green seaweeds, several Ulva species ("sea lettuce") are model organisms for studying carbon assimilation, interactions with bacteria, life cycle progression, and morphogenesis. Ulva species are also notorious for their fast growth and capacity to dominate nutrient-rich, anthropogenically disturbed coastal ecosystems during "green tide" blooms. From an economic perspective, Ulva has garnered increasing attention as a promising feedstock for the production of food, feed, and biobased products, also as a means of removing excess nutrients from the environment. We propose that Ulva is poised to further develop as a model in green seaweed research. In this perspective, we focus explicitly on Ulva mutabilis/compressa as a model species and highlight the molecular data and tools that are currently available or in development. We discuss several areas that will benefit from future research or where exciting new developments have been reported in other Ulva species.
Collapse
Affiliation(s)
- Jonas Blomme
- Department of Biology, Phycology Research Group, Ghent University, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Thomas Wichard
- Institute for Inorganic and Analytical Chemistry, Jena School for Microbial Communication, Friedrich Schiller University Jena, Jena, Germany
| | - Thomas B Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Olivier De Clerck
- Department of Biology, Phycology Research Group, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Liu F, Chen N, Wang H, Li J, Wang J, Qu F. Novel insights into chloroplast genome evolution in the green macroalgal genus Ulva (Ulvophyceae, Chlorophyta). FRONTIERS IN PLANT SCIENCE 2023; 14:1126175. [PMID: 37143870 PMCID: PMC10151680 DOI: 10.3389/fpls.2023.1126175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/03/2023] [Indexed: 05/06/2023]
Abstract
To understand the evolutionary driving forces of chloroplast (or plastid) genomes (plastomes) in the green macroalgal genus Ulva (Ulvophyceae, Chlorophyta), in this study, we sequenced and constructed seven complete chloroplast genomes from five Ulva species, and conducted comparative genomic analysis of Ulva plastomes in Ulvophyceae. Ulva plastome evolution reflects the strong selection pressure driving the compactness of genome organization and the decrease of overall GC composition. The overall plastome sequences including canonical genes, introns, derived foreign sequences and non-coding regions show a synergetic decrease in GC content at varying degrees. Fast degeneration of plastome sequences including non-core genes (minD and trnR3), derived foreign sequences, and noncoding spacer regions was accompanied by the marked decrease of their GC composition. Plastome introns preferentially resided in conserved housekeeping genes with high GC content and long length, as might be related to high GC content of target site sequences recognized by intron-encoded proteins (IEPs), and to more target sites contained by long GC-rich genes. Many foreign DNA sequences integrated into different intergenic regions contain some homologous specific orfs with high similarity, indicating that they could have been derived from the same origin. The invasion of foreign sequences seems to be an important driving force for plastome rearrangement in these IR-lacking Ulva cpDNAs. Gene partitioning pattern has changed and distribution range of gene clusters has expanded after the loss of IR, indicating that genome rearrangement was more extensive and more frequent in Ulva plastomes, which was markedly different from that in IR-containing ulvophycean plastomes. These new insights greatly enhance our understanding of plastome evolution in ecologically important Ulva seaweeds.
Collapse
Affiliation(s)
- Feng Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, Shandong, China
- Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, China
- *Correspondence: Feng Liu, ;
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, Shandong, China
- Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Hongshu Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, Shandong, China
- Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Jiamin Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, Shandong, China
- Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Jing Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, Shandong, China
- Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Fan Qu
- Harbin University of Science and Technology, Weihai, Shandong, China
| |
Collapse
|
9
|
González A, Osorio H, Romero S, Méndez P, Sepúlveda M, Laporte D, Gutierrez-Cutiño M, Santander R, Castro-Nallar E, Moenne A. Transcriptomic analyses reveal increased expression of dioxygenases, monooxygenases, and other metabolizing enzymes involved in anthracene degradation in the marine alga Ulva lactuca. FRONTIERS IN PLANT SCIENCE 2022; 13:955601. [PMID: 36204054 PMCID: PMC9530894 DOI: 10.3389/fpls.2022.955601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/03/2022] [Indexed: 05/06/2023]
Abstract
To analyze the mechanisms involved in anthracene (ANT) degradation in the marine alga Ulva lactuca, total RNA was obtained from the alga cultivated without ANT and with 5 μM of ANT for 24 h, and transcriptomic analyses were performed. A de novo transcriptome was assembled, transcripts differentially expressed were selected, and those overexpressed were identified. Overexpressed transcripts potentially involved in ANT degradation were: one aromatic ring dioxygenase, three 2-oxoglutarate Fe (II) dioxygenases (2-OGDOs), and three dienelactone hydrolases that may account for anthraquinone, phthalic anhydride, salicylic acid, and phthalic acid production (pathway 1). In addition, two flavin adenine dinucleotide (FAD)-dependent monooxygenases, four cytP450 monooxygenases, two epoxide hydrolase, one hydroxyphenylpyruvic acid dioxygenase (HPPDO), and two homogentisic acid dioxygenases (HGDOs) were identified that may also participate in ANT degradation (pathway 2). Moreover, an alkane monooxygenase (alkB), two alcohol dehydrogenases, and three aldehyde dehydrogenases were identified, which may participate in linear hydrocarbon degradation (pathway 3). Furthermore, the level of transcripts encoding some of mentioned enzymes were quantified by qRT-PCR are in the alga cultivated with 5 μM of ANT for 0-48 h, and those more increased were 2-OGDO, HGDO, and alkB monooxygenase. Thus, at least three pathways for ANT and linear hydrocarbons degradation may be existed in U. lactuca. In addition, ANT metabolites were analyzed by gas chromatography and mass spectrometry (GC-MS), allowing the identification of anthraquinone, phthalic anhydride, salicylic acid, and phthalic acid, thus validating the pathway 1.
Collapse
Affiliation(s)
- Alberto González
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Héctor Osorio
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Stephanie Romero
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Patricia Méndez
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Muriel Sepúlveda
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Daniel Laporte
- Laboratorio Multidisciplinario, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | | | - Rocío Santander
- Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Eduardo Castro-Nallar
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
- Centro de Ecología Integrativa, Universidad de Talca, Talca, Chile
| | - Alejandra Moenne
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
- *Correspondence: Alejandra Moenne
| |
Collapse
|