1
|
Wang F, Liu X, Hao X, Wang J, Liu J, Bai C. Oviduct Glycoprotein 1 (OVGP1) Diagnoses Polycystic Ovary Syndrome (PCOS) Based on Machine Learning Algorithms. ACS OMEGA 2024; 9:49054-49063. [PMID: 39713694 PMCID: PMC11656370 DOI: 10.1021/acsomega.4c03111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 11/10/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024]
Abstract
Aims: To investigate the diagnostic value of oviduct glycoprotein 1 (OVGP1) levels for polycystic ovary syndrome (PCOS). Materials and Methods: Serum OVGP1 concentrations were measured by enzyme-linked immunosorbent assay (ELISA). Associations between OVGP1 and endocrine parameters were evaluated by Spearman's correlation analysis. Diagnostic capacity was assessed by utilizing machine learning algorithms and receiver operating characteristic (ROC) curves. Results: OVGP1 levels were significantly decreased in PCOS patients and correlated with the serum follicle-stimulating hormone (FSH) concentration and the luteinizing hormone/follicle-stimulating hormone (LH/FSH) ratio, which are predictors of PCOS occurrence. The diagnostic value of OVGP1 combined with six signatures (LH/FSH, progesterone, total cholesterol, triglyceride, high-density lipoprotein cholesterol, and anti-Müllerian hormone) or three clinical indicators has the potential to significantly improve the accuracy of diagnosing PCOS patients. Conclusion: OVGP1 enhances the ability to diagnose when combined with clinical indicators.
Collapse
Affiliation(s)
| | | | - Xiaoyan Hao
- Department of Clinical Laboratory
Medicine, Xijing Hospital, Fourth Military
Medical University (Air Force Military Medical University), Xi’an 710032, China
| | - Jing Wang
- Department of Clinical Laboratory
Medicine, Xijing Hospital, Fourth Military
Medical University (Air Force Military Medical University), Xi’an 710032, China
| | - Jiayun Liu
- Department of Clinical Laboratory
Medicine, Xijing Hospital, Fourth Military
Medical University (Air Force Military Medical University), Xi’an 710032, China
| | - Congxia Bai
- Department of Clinical Laboratory
Medicine, Xijing Hospital, Fourth Military
Medical University (Air Force Military Medical University), Xi’an 710032, China
| |
Collapse
|
2
|
Liu H, Niu T, Qiu G, Cui S, Zhang D. Taurine promotes insulin synthesis by enhancing Isl-1 expression through miR-7a/RAF1/ERK1/2 pathway. In Vitro Cell Dev Biol Anim 2024; 60:23-35. [PMID: 38117455 DOI: 10.1007/s11626-023-00835-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/04/2023] [Indexed: 12/21/2023]
Abstract
It has been well established that the circulating taurine affects the insulin synthesis in pancreatic islet β-cells, whereas miR-7a and LIM-homeodomain transcription factor Isl-1 are important intracellular factors regulating insulin transcription and synthesis. However, it still remains unknown whether taurine regulates insulin synthesis by affecting miR-7a and/or Isl-1 expressions in mouse pancreatic islet β-cells. The present study was thus proposed to identify the effects of taurine on the expressions of miR-7a and/or Isl-1 and their relations to insulin synthesis in mouse pancreatic islet β-cells by using miR-7a2 knockout (KO) and taurine transporter (TauT) KO mouse models and the related in vitro experiments. The results demonstrated that taurine supplement significantly decreased the pancreas miR-7a expression, but sharply upregulated the pancreas Isl-1 and insulin expressions, and serum insulin levels. However, the enhanced effects of taurine on Isl-1 expression and insulin synthesis were mitigated in the TauT KO and miR-7a2 KO mice. In addition, our results confirmed that taurine markedly increased pancreas RAF1 and ERK1/2 expressions. Collectively, the present study firstly demonstrates that taurine regulates insulin synthesis through TauT/miR-7a/RAF1/ERK1/2/Isl-1 signaling pathway, which are crucial for our understanding the mechanisms of taurine affecting insulin synthesis, and also potential for establishing the therapeutic strategies for diabetes and the diseases related to metabolism.
Collapse
Affiliation(s)
- Hui Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Tongjuan Niu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Guobin Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Di Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Cignarella A, Boscaro C, Albiero M, Bolego C, Barton M. Post-Transcriptional and Epigenetic Regulation of Estrogen Signaling. J Pharmacol Exp Ther 2023; 386:288-297. [PMID: 37391222 DOI: 10.1124/jpet.123.001613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/17/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023] Open
Abstract
Post-translational and epigenetic regulation are important mechanisms controlling functions of genes and proteins. Although the "classic" estrogen receptors (ERs) have been acknowledged to function in mediating estrogen effects via transcriptional mechanisms, estrogenic agents modulate the turnover of several proteins via post-transcriptional and post-translational pathways including epigenetics. For instance, the metabolic and angiogenic action of G-protein coupled estrogen receptor (GPER) in vascular endothelial cells has been recently elucidated. By interacting with GPER, 17β-estradiol and the GPER agonist G1 enhance endothelial stability of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) and capillary tube formation by increasing ubiquitin-specific peptidase 19 levels, thereby reducing PFKFB3 ubiquitination and proteasomal degradation. In addition to ligands, the functional expression and trafficking of ERs can be modulated by post-translational modification, including palmitoylation. MicroRNAs (miRNAs), the most abundant form of endogenous small RNAs in humans, regulate multiple target genes and are at the center of the multi-target regulatory network. This review also discusses the emerging evidence of how miRNAs affect glycolytic metabolism in cancer, as well as their regulation by estrogens. Restoring dysregulated miRNA expression represents a promising strategy to counteract the progression of cancer and other disease conditions. Accordingly, estrogen post-transcriptional regulatory and epigenetic mechanisms represent novel targets for pharmacological and nonpharmacological intervention for the treatment and prevention of hormone-sensitive noncommunicable diseases, including estrogen-sensitive cancers of the reproductive system in women. SIGNIFICANCE STATEMENT: The effects of estrogen are mediated by several mechanisms that are not limited to the transcriptional regulation of target genes. Slowing down the turnover of master regulators of metabolism by estrogens allows cells to rapidly adapt to environmental cues. Identification of estrogen-targeted microRNAs may lead to the development of novel RNA therapeutics that disrupt pathological angiogenesis in estrogen-dependent cancers.
Collapse
Affiliation(s)
- Andrea Cignarella
- Departments of Medicine (A.C., Ca.B., M.A.) and Pharmaceutical and Pharmacological Sciences (Ch.B.), University of Padova, Padova, Italy; and Molecular Internal Medicine, University of Zürich and Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Carlotta Boscaro
- Departments of Medicine (A.C., Ca.B., M.A.) and Pharmaceutical and Pharmacological Sciences (Ch.B.), University of Padova, Padova, Italy; and Molecular Internal Medicine, University of Zürich and Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Mattia Albiero
- Departments of Medicine (A.C., Ca.B., M.A.) and Pharmaceutical and Pharmacological Sciences (Ch.B.), University of Padova, Padova, Italy; and Molecular Internal Medicine, University of Zürich and Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Chiara Bolego
- Departments of Medicine (A.C., Ca.B., M.A.) and Pharmaceutical and Pharmacological Sciences (Ch.B.), University of Padova, Padova, Italy; and Molecular Internal Medicine, University of Zürich and Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Matthias Barton
- Departments of Medicine (A.C., Ca.B., M.A.) and Pharmaceutical and Pharmacological Sciences (Ch.B.), University of Padova, Padova, Italy; and Molecular Internal Medicine, University of Zürich and Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| |
Collapse
|