1
|
Zhang C, Li J, Wang L, Yang P, Luo X. ALKBH1 knockdown promotes the growth, migration and invasion of HTR-8/SVneo cells through regulating the m5C modification PSMD14. Sci Rep 2025; 15:7345. [PMID: 40025166 PMCID: PMC11873043 DOI: 10.1038/s41598-025-91233-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/19/2025] [Indexed: 03/04/2025] Open
Abstract
Preeclampsia (PE) is a pregnancy disease characterized by insufficient invasion and growth of trophoblast cells. adeno-associated virus encoding alkB homolog 1 (ALKBH1) is a demethylase in 5-methylcytosine (m5C) methylation modification. This study was performed to explore the role of ALKBH1 in hypoxia treated human extravasated trophoblast cells. Hypoxia treated human extravasated trophoblast cells (HTR-8/SVneo) was used to simulate the occurrence of PE in vitro. The cells phenotype was detected by CCK-8 and Transwell assays. The m5c levels and m5C levels of PSMD14 were analyzed by m5C dot blot and M5C Me-RIP assays. Then, the interaction between ALKBH1 and PSMD14 were confirmed by RIP and dual-luciferase reporter assays. ALKBH1 was up-regulated in hypoxia treated HTR-8/SVneo cells. Additionally, ALKBH1 knockdown increased the m5C contents, cell viability, migration and invasion abilities of hypoxia treated HTR-8/SVneo cells. Furthermore, ALKBH1 knockdown increased the m5C and mRNA levels, and mRNA stability of PSMD14. RIP and dual-luciferase reporter assays demonstrated that ALKBH1 interacted with PSMD14. Besides, PSMD14 knockdown reversed the effects of ALKBH1 silencing on cell viability, migration and invasion abilities of hypoxia treated HTR-8/SVneo cells. ALKBH1 mediated m5C levels were decreased in the hypoxia treated HTR-8/SVneo cells, which further decreased the cell viability, migration and invasion abilities through targeting the PSMD14 levels.
Collapse
Affiliation(s)
- Caili Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University or Maternal and Child Hospital of Henan Province, No.10, Kangfuqian Street, Zhengzhou City, 450001, Henan, China
| | - Jie Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University or Maternal and Child Hospital of Henan Province, No.10, Kangfuqian Street, Zhengzhou City, 450001, Henan, China
| | - Luwen Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University or Maternal and Child Hospital of Henan Province, No.10, Kangfuqian Street, Zhengzhou City, 450001, Henan, China
| | - Peifeng Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University or Maternal and Child Hospital of Henan Province, No.10, Kangfuqian Street, Zhengzhou City, 450001, Henan, China
| | - Xiaohua Luo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University or Maternal and Child Hospital of Henan Province, No.10, Kangfuqian Street, Zhengzhou City, 450001, Henan, China.
| |
Collapse
|
2
|
Peñailillo R, Velásquez V, Acuña-Gallardo S, García F, Sánchez M, Nardocci G, Illanes SE, Monteiro LJ. FOXM1 Participates in Trophoblast Migration and Early Trophoblast Invasion: Potential Role in Blastocyst Implantation. Int J Mol Sci 2024; 25:1678. [PMID: 38338955 PMCID: PMC10855960 DOI: 10.3390/ijms25031678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/21/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Successful implantation requires coordinated migration and invasion of trophoblast cells into a receptive endometrium. Reduced forkhead box M1 (FOXM1) expression limits trophoblast migration and angiogenesis in choriocarcinoma cell lines, and in a rat model, placental FOXM1 protein expression was significantly upregulated in the early stages of pregnancy compared to term pregnancy. However, the precise role of FOXM1 in implantation events remains unknown. By analyzing mice blastocysts at embryonic day (E3.5), we have demonstrated that FOXM1 is expressed as early as the blastocyst stage, and it is expressed in the trophectoderm of the blastocyst. Since controlled oxygen tension is determinant for achieving normal implantation and placentation and a chronic hypoxic environment leads to shallow trophoblast invasion, we evaluated if FOXM1 expression changes in response to different oxygen tensions in the HTR-8/SVneo first trimester human trophoblast cell line and observed that FOXM1 expression was significantly higher when trophoblast cells were cultured at 3% O2, which coincides with oxygen concentrations in the uteroplacental interface at the time of implantation. Conversely, FOXM1 expression diminished in response to 1% O2 that resembles a hypoxic environment in utero. Migration and angiogenesis were assessed following FOXM1 knockdown and overexpression at 3% O2 and 1% O2, respectively, in HTR-8/SVneo cells. FOXM1 overexpression increased transmigration ability and tubule formation. Using a 3D trophoblast invasion model with trophospheres from HTR-8/SVneo cells cultured on a layer of MATRIGEL and of mesenchymal stem cells isolated from menstrual fluid, we observed that trophospheres obtained from 3D trophoblast invasion displayed higher FOXM1 expression compared with pre-invasion trophospheres. Moreover, we have also observed that FOXM1-overexpressing trophospheres increased trophoblast invasion compared with controls. HTR-8/SVneo-FOXM1-depleted cells led to a downregulation of PLK4, VEGF, and MMP2 mRNA expression. Our current findings suggest that FOXM1 participates in embryo implantation by contributing to trophoblast migration and early trophoblast invasion, by inducing transcription activation of genes involved in these processes. Maternal-fetal communication is crucial for trophoblast invasion, and maternal stromal cells may induce higher levels of FOXM1 in trophoblast cells.
Collapse
Affiliation(s)
- Reyna Peñailillo
- Program in Biology of Reproduction, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago 7620001, Chile; (R.P.); (V.V.); (S.A.-G.); (F.G.); (S.E.I.)
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 7620001, Chile;
| | - Victoria Velásquez
- Program in Biology of Reproduction, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago 7620001, Chile; (R.P.); (V.V.); (S.A.-G.); (F.G.); (S.E.I.)
| | - Stephanie Acuña-Gallardo
- Program in Biology of Reproduction, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago 7620001, Chile; (R.P.); (V.V.); (S.A.-G.); (F.G.); (S.E.I.)
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 7620001, Chile;
- School of Medicine, Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile
| | - Felipe García
- Program in Biology of Reproduction, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago 7620001, Chile; (R.P.); (V.V.); (S.A.-G.); (F.G.); (S.E.I.)
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 7620001, Chile;
| | - Mario Sánchez
- Program in Neuroscience, Centre for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago 7620001, Chile;
| | - Gino Nardocci
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 7620001, Chile;
- School of Medicine, Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile
- Molecular Biology and Bioinformatics Lab, Program in Molecular Biology and Bioinformatics, Centre for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago 7620001, Chile
| | - Sebastián E. Illanes
- Program in Biology of Reproduction, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago 7620001, Chile; (R.P.); (V.V.); (S.A.-G.); (F.G.); (S.E.I.)
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 7620001, Chile;
- School of Medicine, Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile
| | - Lara J. Monteiro
- Program in Biology of Reproduction, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago 7620001, Chile; (R.P.); (V.V.); (S.A.-G.); (F.G.); (S.E.I.)
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 7620001, Chile;
- School of Medicine, Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile
| |
Collapse
|
3
|
Shi H, Kong R, Miao X, Gou L, Yin X, Ding Y, Cao X, Meng Q, Gu M, Suo F. Decreased PPP1R3G in pre-eclampsia impairs human trophoblast invasion and migration via Akt/MMP-9 signaling pathway. Exp Biol Med (Maywood) 2023; 248:1373-1382. [PMID: 37642261 PMCID: PMC10657594 DOI: 10.1177/15353702231182214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/28/2023] [Indexed: 08/31/2023] Open
Abstract
Pre-eclampsia (PE) is a severe pregnancy complication characterized by impaired trophoblast invasion and spiral artery remodeling and can have serious consequences for both mother and child. Protein phosphatase 1 regulatory subunit 3G (PPP1R3G) is involved in numerous tumor-related biological processes. However, the biological action and underlying mechanisms of PPP1R3G in PE progression remain unclear. We used western blotting and immunohistochemistry to investigate PPP1R3G expression in gestational age-matched pre-eclamptic and normal placental tissues. After lentivirus transfection, wound-healing, Transwell, cell-counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), and TdT mediateddUTP Nick End Labeling (TUNEL) assays were used to assess trophoblast migration, invasion, proliferation, and apoptosis, respectively. The relative expression levels of PPP1R3G and the proteins involved in the Akt signaling pathway were determined using western blotting. The results showed that PPP1R3G levels were significantly lower in the placental tissues and GSE74341 microarray of the PE group than those of the healthy control group. We also found that neonatal weight and Apgar score were lower at birth, and peak systolic blood pressure and diastolic blood pressure were higher in the PE group than in the non-PE group. In addition, PPP1R3G knockdown decreased p-Akt/Akt expression and inhibited migration, invasion, and proliferation in HTR-8/SVneo trophoblasts but had no discernible effect on cell apoptosis. Furthermore, PPP1R3G positively regulated matrix metallopeptidase 9 (MMP-9), which was downregulated in placental tissues of pregnant women with PE. These results provided the first evidence that the reduced levels of PPP1R3G might contribute to PE by suppressing the invasion and migration of trophoblasts and targeting the Akt/MMP-9 signaling pathway.
Collapse
Affiliation(s)
- Huimin Shi
- Department of Obstetrics, Xuzhou Cancer Hospital, Xuzhou 221005, Jiangsu Province, China
| | - Renyu Kong
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Xu Miao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Lingshan Gou
- Center for Genetic Medicine, Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, 46 Heping Road, Xuzhou 221009, Jiangsu Province, China
| | - Xin Yin
- Center for Genetic Medicine, Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, 46 Heping Road, Xuzhou 221009, Jiangsu Province, China
| | - Yuning Ding
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiliang Cao
- Department of Urology, Xuzhou No. 1 People’s Hospital, the Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Qingyong Meng
- Department of Obstetrics, Xuzhou Maternal and Child Health Hospital Affiliated to Xuzhou Medical University, Xuzhou 221009, Jiangsu Province, China
| | - Maosheng Gu
- Center for Genetic Medicine, Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, 46 Heping Road, Xuzhou 221009, Jiangsu Province, China
| | - Feng Suo
- Center for Genetic Medicine, Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, 46 Heping Road, Xuzhou 221009, Jiangsu Province, China
| |
Collapse
|
4
|
Hromadnikova I. Pathogenesis of Pregnancy-Related Complications. Int J Mol Sci 2023; 24:5584. [PMID: 36982657 PMCID: PMC10058407 DOI: 10.3390/ijms24065584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
In this special edition (closed on 31 October 2022), 4 reviews, 13 original papers, 1 communication, and 1 case report are published [...].
Collapse
Affiliation(s)
- Ilona Hromadnikova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
| |
Collapse
|