1
|
Li J, Wang X, Lin Y, Li Z, Xiong W. Integrative eQTL and Mendelian randomization analysis reveals key genetic markers in mesothelioma. Respir Res 2025; 26:140. [PMID: 40223054 PMCID: PMC11995628 DOI: 10.1186/s12931-025-03219-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 04/02/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Mesothelioma is a rare cancer that originates from the pleura and peritoneum, with its incidence increasing due to asbestos exposure. Patients are frequently diagnosed at advanced stages, resulting in poor survival rates. Therefore, the identification of molecular markers for early detection and diagnosis is essential. METHODS Three mesothelioma datasets were downloaded from the GEO database for differential gene expression analysis. Instrumental variables (IVs) were identified based on expression quantitative trait locus (eQTL) data for Mendelian randomization (MR) analysis using mesothelioma Genome-Wide Association Study (GWAS) data from the FINNGEN database. The intersecting genes from MR-identified risk genes and differentially expressed genes were identified as key co-expressed genes for mesothelioma. Functional enrichment analyses, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA), as well as immune cell correlation analysis, were performed to elucidate the roles of key genes in mesothelioma. Additionally, the differential expression of key genes in mesothelioma was validated in independent GEO datasets and TCGA datasets. This integrative research combining multiple databases and analytical methods established a robust model for identifying mesothelioma risk genes. RESULTS The research conducted in our study identified 1608 genes that were expressed differentially in mesothelioma GEO datasets. By combining these genes with 192 genes from MR analysis, we identified 14 key genes. Notably, MPZL1, SOAT1, TACC3, and CYBRD1 are linked to a high risk of mesothelioma, while TGFBR3, NDRG2, EPAS1, CPA3, MNDA, PRKCD, MTUS1, ALOX15, LRRN3, and ITGAM are associated with a lower risk. These genes were found to be enriched in pathways associated with superoxide metabolism, cell cycle regulation, and proteasome function, all of which are linked to the development of mesothelioma. Noteworthy observations included a significant infiltration of M1 macrophages and CD4 + T cells in mesothelioma, with genes SOAT1, MNDA, and ITGAM showing a positive correlation with the level of M1 macrophage infiltration. Furthermore, the differential expression analyses conducted on the GEO validation set and TCGA data confirmed the significance of the identified key genes. CONCLUSION This integrative eQTL and Mendelian randomization analysis provides evidence of a positive causal association between 14 key co-expressed genes and mesothelioma genetically. These disease critical genes are implicated in correlations with biological processes and infiltrated immune cells related to mesothelioma. Moreover, our study lays a theoretical foundation for further research into the mechanisms of mesothelioma and potential clinical applications.
Collapse
Affiliation(s)
- Jinsong Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
- Key Laboratory of Clinical Biochemistry Testing in Universities of Yunnan Province, College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
| | - Xingmeng Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
- Key Laboratory of Clinical Biochemistry Testing in Universities of Yunnan Province, College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
| | - Yaru Lin
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
- Key Laboratory of Clinical Biochemistry Testing in Universities of Yunnan Province, College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
| | - Zhengliang Li
- Department of Radiology, The First Affiliated Hospital of Dali University, Dali University, Dali, Yunnan, China.
| | - Wei Xiong
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dali University, Dali, Yunnan, China.
- Key Laboratory of Clinical Biochemistry Testing in Universities of Yunnan Province, College of Basic Medical Sciences, Dali University, Dali, Yunnan, China.
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China.
| |
Collapse
|
2
|
Lu Q, Liu J, Xiong Y, Jian J, Wang J, Chen Z, Wan S, Liu X, Wang L. Cyanidin-3-glucoside upregulated NDRG2 through the PI3K/AKT pathway to alleviate EMT and ECM in renal fibrosis. Sci Rep 2025; 15:10695. [PMID: 40155416 PMCID: PMC11953473 DOI: 10.1038/s41598-025-94918-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/18/2025] [Indexed: 04/01/2025] Open
Abstract
Renal fibrosis is a critical progression of chronic kidney disease, and epithelial-to-mesenchymal transition (EMT) and extracellular matrix(ECM) deposition are crucial pathologic change of renal fibrosis, which still lacks of effective treatment. In this study, it was found that cyanidin-3-O-glucoside (C3G) could inhibit EMT and ECM activated by unilateral ureteral obstruction (UUO) and transforming growth factor-β1 (TGF-β1) stimulation. Moreover, N-Myc downstream-regulated gene 2(NDRG2), which involved in the progression of renal fibrosis, was down-regulated in vivo and in vitro model. However, C3G pretreatment could reverse the reductive expression of NDRG2. Furthermore, we found that the combined treatment of C3G and si-NDRG2 could reverse the decreased EMT and ECM, which induced by C3G treatment only. And the activation of Phosphatidylinositol 3-kinase (PI3K)/ Protein Kinase B (AKT) pathway significantly enhanced EMT and ECM, which was decreased by C3G treatment only in TGF-β1 induced Human Kidney 2 (HK-2) cells. In conclusion, our results demonstrated that C3G alleviated EMT and ECM by elevating NDRG2 expression through the PI3K/AKT pathway, indicating that C3G could be a potential treatment against renal fibrosis.
Collapse
Affiliation(s)
- Qianxue Lu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jin Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Yufeng Xiong
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jun Jian
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jingsong Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Shanshan Wan
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
3
|
Wu S, Zhang J, Chen S, Zhou X, Liu Y, Hua H, Qi X, Mao Y, Young KH, Lu T. Low NDRG2, regulated by the MYC/MIZ-1 complex and methylation, predicts poor outcomes in DLBCL patients. Ann Hematol 2024; 103:2877-2892. [PMID: 38842567 DOI: 10.1007/s00277-024-05829-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
Diffuse large B-cell lymphoma (DLBCL) represents the most common tumor in non-Hodgkin's lymphoma. N-Myc downstream-regulated gene 2 (NDRG2) is a tumor suppressor highly expressed in healthy tissues but downregulated in many cancers. Although cell proliferation-related metabolism rewiring has been well characterized, less is known about the mechanism of metabolic changes with DLBCL. Herein, we investigated the expressions of NDRG2, MYC and Myc-interacting zinc finger protein 1 (MIZ-1) in seven human lymphoma (mostly DLBCLs) cell lines. NDRG2 expression was inversely correlated with the expressions of MYC and MIZ-1. Further, we explored the regulatory mechanism and biological functions underlying the lymphomagenesis involving NDRG2, MYC and MIZ-1. MYC and MIZ-1 promoted DLBCL cell proliferation, while NDRG2 induced apoptosis in LY8 cells. Moreover, NDRG2 methylation was reversed by the 5-Aza-2'-deoxycytidine (5-Aza-CDR) treatment, triggering the downregulation of MYC and inhibiting DLBCL cell survival. MYC interacts with NDRG2 to regulate energy metabolism associated with mTOR. Remarkably, supporting the biological significance, the converse correlation between NDRG2 and MYC was observed in human DLBCL tumor tissues (R = -0.557). Bioinformatics analysis further validated the association among NDRG2, MYC, MIZ-1, mTOR, and related metabolism genes. Additionally, NDRG2 (P = 0.001) and MYC (P < 0.001) were identified as promising prognostic biomarkers in DLBCL patients through survival analysis. Together, our data demonstrate that the MYC/MIZ-1 complex interplays with NDRG2 to influence the proliferation and apoptosis of DLBCL cells and show the characterizations of NDRG2, MYC and MIZ-1 for metabolism features and prediction prognosis in DLBCL.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Gene Expression Regulation, Neoplastic
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- Male
- Prognosis
- Cell Line, Tumor
- Female
- Middle Aged
- DNA Methylation
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/metabolism
- Aged
- Cell Proliferation
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
Collapse
Affiliation(s)
- Shuang Wu
- Department of Hematology, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Jie Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
- Department of Oncology, Affiliated Hospital of Jiangnan University, No.1000, Hefeng Road, Wuxi, 214122, Jiangsu Province, China
| | - Shan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
- Department of Oncology, Affiliated Hospital of Jiangnan University, No.1000, Hefeng Road, Wuxi, 214122, Jiangsu Province, China
| | - Xinyi Zhou
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Yankui Liu
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Haiying Hua
- Department of Hematology, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Xiaowei Qi
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Yong Mao
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
- Department of Oncology, Affiliated Hospital of Jiangnan University, No.1000, Hefeng Road, Wuxi, 214122, Jiangsu Province, China
| | - Ken H Young
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Durham, NC, 27710, USA
| | - Tingxun Lu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China.
- Department of Oncology, Affiliated Hospital of Jiangnan University, No.1000, Hefeng Road, Wuxi, 214122, Jiangsu Province, China.
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
4
|
Wu L, Zheng H, Guo X, Li N, Qin L, Li X, Lou G. Integrative analyses of genes associated with oxidative stress and cellular senescence in triple-negative breast cancer. Heliyon 2024; 10:e34524. [PMID: 39130410 PMCID: PMC11315143 DOI: 10.1016/j.heliyon.2024.e34524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
Background Oxidative stress and cellular senescence (OSCS) have great impacts on the occurrence and progression of triple-negative breast cancer (TNBC). This study was intended to construct a prognostic model based on oxidative stress and cellular senescence related difference expression genes (OSCSRDEGs) for TNBC. Methods The Cancer Genome Atlas (TCGA) databases and two Gene Expression Omnibus (GEO) databases were used to identify OSCSRDEGs. The relationship between OSCSRDEGs and immune infiltration was examined using single-sample gene-set enrichment analysis (ssGSEA), ESTIMATE, and the CIBERSORT algorithm. Least absolute shrinkage and selection operator (LASSO) regression analyses, Cox regression and Kaplan-Meier analysis were employed to construct a prognostic model. Receiver operating characteristic (ROC) curves, nomograms, and decision curve analysis (DCA) were used to evaluate the prognostic efficacy. Gene Set Enrichment Analysis (GSEA) Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) were utilized to explore the potential functions and mechanism. Results A comprehensive analysis identified a total of 27 OSCSRDEGs, out of which 15 genes selected for development of a prognostic model. A high degree of statistical significance was observed for the riskscores derived from this model to accurately predict TNBC Overall survival. The decision curve analysis (DCA) and ROC curve analysis further confirmed the superior accuracy of the OSCSRDEGs prognostic model in predicting efficacy. Notably, the nomogram analysis highlighted that DMD exhibited the highest utility within the model. In comparison between high and low OSCScore groups, the infiltration abundance of immune cells was statistically different in the TCGA-TNBC dataset. Conclusion These studies have effectively identified four essential OSCSRDEGs (CFI, DMD, NDRG2, and NRP1) and meticulously developed an OSCS-associated prognostic model for individuals diagnosed with TNBC. These discoveries have the potential to significantly contribute to the comprehension of the involvement of OSCS in TNBC.
Collapse
Affiliation(s)
- Lihua Wu
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Hongyan Zheng
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Xiaorong Guo
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Nan Li
- Department of Pathology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Luyao Qin
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Xiaoqing Li
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Ge Lou
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| |
Collapse
|
5
|
Reznik SE, Tiwari AK, Chavda V, Ashby Jr CR. The delivery of N-myc downstream-regulated gene 2 (NDRG2) self-amplifying mRNA via modified lipid nanoparticles as a potential treatment for drug-resistant and metastatic cancers. MEDICAL REVIEW (2021) 2024; 4:235-238. [PMID: 38919399 PMCID: PMC11195423 DOI: 10.1515/mr-2024-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/12/2024] [Indexed: 06/27/2024]
Abstract
The protein, N-myc downstream-regulated gene 2 (NDRG2), a tumor suppressor, is significantly decreased or absent in many types of cancer. There is a significant negative correlation between the levels of NDRG2 and the development and progression of cancer tumor recurrence and tumor invasion, in different cancers. In contrast, the in vitro and in vivo overexpression of the NDRG2 protein decreases the proliferation, growth, adhesion and migration of many types of cancer cells. The in vitro overexpression of NDRG2 increases the efficacy of certain anticancer drugs in specific types of cancer cells. We hypothesize that the delivery of the mRNA of the NDRG2 protein, encapsulated by lipid nanoparticles, could represent a potential treatment of metastatic and drug-resistant cancers. This would be accomplished using a self-amplifying mRNA that encodes the NDRG2 protein and an RNA-dependent-RNA polymerase, obtained from an in vitrotranscribed (IVT) mRNA. The IVT mRNA would be encapsulated in a lipid nanoformulation. The efficacy of the nanoformulation would be determined in cultured cancer cells and if the results are positive, nude mice transplanted with either drug-resistant or metastatic drug-resistant cancer cells, would be treated with the nano- formulation and monitored for efficacy and adverse effects. If the appropriate preclinical studies indicate this formulation is efficacious and safe, it is possible it could be evaluated in clinical trials.
Collapse
Affiliation(s)
- Sandra E. Reznik
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, USA
- Departments of Pathology and Obstetrics and Gynecology and Women’s Health, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, USA
| | - Amit K. Tiwari
- Department of Pharmaceutical Sciences, College of Pharmacy University of Arkansas for Medical SciencesLittle Rock, USA
| | - Vivek Chavda
- Department of Pharmaceutics and Pharmaceutical TechnologyL. M. College of Pharmacy, Ahmedabad, India
| | - Charles R. Ashby Jr
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, USA
| |
Collapse
|
6
|
Danielpour D. Advances and Challenges in Targeting TGF-β Isoforms for Therapeutic Intervention of Cancer: A Mechanism-Based Perspective. Pharmaceuticals (Basel) 2024; 17:533. [PMID: 38675493 PMCID: PMC11054419 DOI: 10.3390/ph17040533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The TGF-β family is a group of 25 kDa secretory cytokines, in mammals consisting of three dimeric isoforms (TGF-βs 1, 2, and 3), each encoded on a separate gene with unique regulatory elements. Each isoform plays unique, diverse, and pivotal roles in cell growth, survival, immune response, and differentiation. However, many researchers in the TGF-β field often mistakenly assume a uniform functionality among all three isoforms. Although TGF-βs are essential for normal development and many cellular and physiological processes, their dysregulated expression contributes significantly to various diseases. Notably, they drive conditions like fibrosis and tumor metastasis/progression. To counter these pathologies, extensive efforts have been directed towards targeting TGF-βs, resulting in the development of a range of TGF-β inhibitors. Despite some clinical success, these agents have yet to reach their full potential in the treatment of cancers. A significant challenge rests in effectively targeting TGF-βs' pathological functions while preserving their physiological roles. Many existing approaches collectively target all three isoforms, failing to target just the specific deregulated ones. Additionally, most strategies tackle the entire TGF-β signaling pathway instead of focusing on disease-specific components or preferentially targeting tumors. This review gives a unique historical overview of the TGF-β field often missed in other reviews and provides a current landscape of TGF-β research, emphasizing isoform-specific functions and disease implications. The review then delves into ongoing therapeutic strategies in cancer, stressing the need for more tools that target specific isoforms and disease-related pathway components, advocating mechanism-based and refined approaches to enhance the effectiveness of TGF-β-targeted cancer therapies.
Collapse
Affiliation(s)
- David Danielpour
- Case Comprehensive Cancer Center Research Laboratories, The Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH 44106, USA; ; Tel.: +1-216-368-5670; Fax: +1-216-368-8919
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Institute of Urology, University Hospitals, Cleveland, OH 44106, USA
| |
Collapse
|
7
|
Ma Z, Ma Y, Feng J, Xu Z, Cheng C, Qin J, Li S, Jiang J, Kong R. NDRG2 acts as a negative regulator of the progression of small-cell lung cancer through the modulation of the PTEN-AKT-mTOR signalling cascade. Toxicol Appl Pharmacol 2024; 485:116915. [PMID: 38537875 DOI: 10.1016/j.taap.2024.116915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/08/2024]
Abstract
N-myc downstream-regulated gene 2 (NDRG2) has been recognised as a negative regulator of the progression of numerous tumours, yet its specific role in small-cell lung carcinoma (SCLC) is not fully understood. The purpose of the current study was to investigate the biological role and mechanism of NDRG2 in SCLC. Initial investigation using the Gene Expression Omnibus (GEO) dataset revealed marked downregulation of NDRG2 transcripts in SCLC. The decreased abundance of NDRG2 in SCLC was verified by examining clinical specimens. Increasing NDRG2 expression in SCLC cell lines caused significant changes in cell proliferation, cell cycle progression, colony formation, and chemosensitivity. NDRG2 overexpression decreased the levels of phosphorylated PTEN, AKT and mTOR. In PTEN-depleted SCLC cells, the upregulation of NDRG2 did not result in any noticeable impact on AKT or mTOR activation. Additionally, the reactivation of AKT reversed the antitumour effects of NDRG2 in SCLC cells. Notably, increasing NDRG2 expression retarded the growth of SCLC cell-derived xenografts in vivo. In conclusion, NDRG2 serves as an inhibitor of SCLC, and its cancer-inhibiting effects are achieved through the suppression of AKT/mTOR via the activation of PTEN. This work suggests that NDRG2 is a potential druggable target for SCLC treatment.
Collapse
Affiliation(s)
- Zhenchuan Ma
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Yuefeng Ma
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Jie Feng
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zhengshui Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Chuantao Cheng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Jie Qin
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Shaomin Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Jiantao Jiang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Ranran Kong
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| |
Collapse
|
8
|
Chen T, Xiong Y, Deng C, Hu C, Li M, Quan R, Yu X. NDRG2 alleviates photoreceptor apoptosis by regulating the STAT3/TIMP3/MMP pathway in mice with retinal degenerative disease. FEBS J 2024; 291:986-1007. [PMID: 38037211 DOI: 10.1111/febs.17021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/05/2023] [Accepted: 10/29/2023] [Indexed: 12/02/2023]
Abstract
Photoreceptor apoptosis is the main pathological feature of retinal degenerative diseases; however, the underlying molecular mechanism has not been elucidated. Recent studies have shown that N-myc downstream regulated gene 2 (NDRG2) exerts a neuroprotective effect on the brain and spinal cord. In addition, our previous studies have confirmed that NDRG2 is expressed in mouse retinal photoreceptors and counteracts N-methyl-N-nitrosourea (MNU)-induced apoptosis. However, the underlying molecular mechanism remains unclear. In this study, we observed that the expression of NDRG2 was not only significantly inhibited in photoreceptors after MNU treatment but also after hydrogen peroxide treatment, and photoreceptor apoptosis was alleviated or aggravated after overexpression or knockdown of NDRG2 in the 661W photoreceptor cell line, respectively. The apoptosis inhibitor Z-VAD-FMK rescued photoreceptor apoptosis induced by MNU after NDRG2 knockdown. Next, we screened and identified tissue inhibitor of metalloproteinases 3 (TIMP3) as the downstream molecule of NDRG2 in 661W cells by using quantitative real-time polymerase chain reaction. TIMP3 exerts a neuroprotective effect by inhibiting the expression of matrix metalloproteinases (MMPs). Subsequently, we found that signal transducer and activator of transcription 3 (STAT3) mediated the NDRG2-associated regulation of TIMP3. Finally, we overexpressed NDRG2 in mouse retinal tissues by intravitreally injecting an adeno-associated virus with mouse NDRG2 in vivo. Results showed that NDRG2 upregulated the expression of phospho-STAT3 (p-STAT3) and TIMP3, while suppressing MNU-induced photoreceptor apoptosis and MMP expression. Our findings revealed how NDRG2 regulates the STAT3/TIMP3/MMP pathway and uncovered the molecular mechanism underlying its neuroprotective effect on mouse retinal photoreceptors.
Collapse
Affiliation(s)
- Tao Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Institute of Molecular and Translational Medicine, Xi'an Jiaotong University, China
| | - Yecheng Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Institute of Molecular and Translational Medicine, Xi'an Jiaotong University, China
| | - Chunlei Deng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Institute of Molecular and Translational Medicine, Xi'an Jiaotong University, China
| | - Chengbiao Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Institute of Molecular and Translational Medicine, Xi'an Jiaotong University, China
| | - Mengxing Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Institute of Molecular and Translational Medicine, Xi'an Jiaotong University, China
| | - Rui Quan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Institute of Molecular and Translational Medicine, Xi'an Jiaotong University, China
| | - Xiaorui Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Institute of Molecular and Translational Medicine, Xi'an Jiaotong University, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, China
| |
Collapse
|
9
|
Ichikawa T, Suekane A, Nakahata S, Iha H, Shimoda K, Murakami T, Morishita K. Inhibition of PRMT5/MEP50 Arginine Methyltransferase Activity Causes Cancer Vulnerability in NDRG2 low Adult T-Cell Leukemia/Lymphoma. Int J Mol Sci 2024; 25:2842. [PMID: 38474089 DOI: 10.3390/ijms25052842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
N-myc downstream-regulated gene 2 (NDRG2), which is a tumour suppressor, is frequently lost in many types of tumours, including adult T-cell leukaemia/lymphoma (ATL). The downregulation of NDRG2 expression is involved in tumour progression through the aberrant phosphorylation of several important signalling molecules. We observed that the downregulation of NDRG2 induced the translocation of protein arginine methyltransferase 5 (PRMT5) from the nucleus to the cytoplasm via the increased phosphorylation of PRMT5 at Serine 335. In NDRG2low ATL, cytoplasmic PRMT5 enhanced HSP90A chaperone activity via arginine methylation, leading to tumour progression and the maintenance of oncogenic client proteins. Therefore, we examined whether the inhibition of PRMT5 activity is a drug target in NDRG2low tumours. The knockdown of PRMT5 and binding partner methylsome protein 50 (MEP50) expression significantly demonstrated the suppression of cell proliferation via the degradation of AKT and NEMO in NDRG2low ATL cells, whereas NDRG2-expressing cells did not impair the stability of client proteins. We suggest that the relationship between PRMT5/MEP50 and the downregulation of NDRG2 may exhibit a novel vulnerability and a therapeutic target. Treatment with the PRMT5-specific inhibitors CMP5 and HLCL61 was more sensitive in NDRG2low cancer cells than in NDRG2-expressing cells via the inhibition of HSP90 arginine methylation, along with the degradation of client proteins. Thus, interference with PRMT5 activity has become a feasible and effective strategy for promoting cancer vulnerability in NDRG2low ATL.
Collapse
Affiliation(s)
- Tomonaga Ichikawa
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, Miyazaki 889-1692, Japan
- Department of Microbiology, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama 350-0495, Japan
| | - Akira Suekane
- Trauma and Acute Critical Care Center, Tokyo Medical and Dental University Hospital, Tokyo 113-8510, Japan
| | - Shingo Nakahata
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, Miyazaki 889-1692, Japan
- Division of HTLV-1/ATL Carcinogenesis and Therapeutics, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan
| | - Hidekatsu Iha
- Division of Pathophysiology, The Research Center for GLOBAL and LOCAL Infectious Diseases (RCGLID), Oita University, Yufu 879-5503, Japan
| | - Kazuya Shimoda
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Takashi Murakami
- Department of Microbiology, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama 350-0495, Japan
| | - Kazuhiro Morishita
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, Miyazaki 889-1692, Japan
- Project for Advanced Medical Research and Development, Project Research Division, Frontier Science Research Center, University of Miyazaki, Miyazaki 889-1692, Japan
| |
Collapse
|
10
|
Swellam M, Khalifa MK, Nageeb AM, Ezz El-Arab L, El-Mahdy M, El-Bahy K, Sayed Mahmoud M. Clinical role of NDRG2-based methylation status on survival pattern of glioblastoma. Int J Immunopathol Pharmacol 2024; 38:3946320241250294. [PMID: 38686946 PMCID: PMC11062227 DOI: 10.1177/03946320241250294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
OBJECTIVES Gliobalstoma is the most common primary brain tumor in adults with an extensive genetic and transcriptional heterogeneity, still identification of the role of DNA methylation, as one of epigenetic alterations, is emerged. Authors aimed to study the clinical role of N-myc downstream-regulated gene 2 (NDRG2) -based methylation among GBM patients versus benign neurological diseases (BND), investigate its prognostic role and its relation with survival outcomes. METHODS A total of 78 FFPE specimens were recruited as follows: GBM (n = 58) and BND (n = 20) then analyzed for NDRG2 methylation using Methyl II quantitative PCR system. The sensitivity and specificity of methylation was detected using receiver operating characteristic (ROC) curve and the relation with clinicopathological criteria for GBM and response to treatment were studied. Survival patterns; progression free survival (PFS) and overall survival (OS) were analyzed using Kaplan-Meier analyses. RESULTS Mean methylation NDRG2 level was significantly increased in GBM patients as compared to BND and its sensitivity and specificity were 96.55% and 95%, respectively with area under curve (AUC) equals 0.973. Among the clinical characteristic factors, mean methylation level reported significant difference with ECOG and tumor site. Survival out comes revealed that NDRG2 methylation increased with worse PFS and OS at significant level (long rank test X2 = 13.3, p < .0001; and X2 = 7.1, p = .008, respectively). CONCLUSION Current findings highlight the importance of studying DNA methylation of NDRG2 as a key factor to understand the role of epigenetic alterations in GBM.
Collapse
Affiliation(s)
- Menha Swellam
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
- High Throughput Molecular and Genetic laboratory, Central Laboratories Network and the Centers of Excellence, National Research Centre, Dokki, Giza, Egypt
| | - Mohamed K. Khalifa
- CSO at Omnicsense, Giza, Egypt
- Molecular Pathology Lab, Children Cancer Hospital, Giza, Egypt
| | - Amira M Nageeb
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
- High Throughput Molecular and Genetic laboratory, Central Laboratories Network and the Centers of Excellence, National Research Centre, Dokki, Giza, Egypt
| | - Lobna Ezz El-Arab
- Clinical Oncology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Manal El-Mahdy
- Pathology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Khaled El-Bahy
- Department of Neurosurgery, Faculty of Medicine, Ain Sham University, Cairo, Egypt
| | - Magda Sayed Mahmoud
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
- High Throughput Molecular and Genetic laboratory, Central Laboratories Network and the Centers of Excellence, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
11
|
Mehta P, Chattopadhyay P, Mohite R, D'Rozario R, Bandopadhyay P, Sarif J, Ray Y, Ganguly D, Pandey R. Suppressed transcript diversity and immune response in COVID-19 ICU patients: a longitudinal study. Life Sci Alliance 2024; 7:e202302305. [PMID: 37918965 PMCID: PMC10622646 DOI: 10.26508/lsa.202302305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
Understanding the dynamic changes in gene expression during Acute Respiratory Distress Syndrome (ARDS) progression in post-acute infection patients is crucial for unraveling the underlying mechanisms. Study investigates the longitudinal changes in gene/transcript expression patterns in hospital-admitted severe COVID-19 patients with ARDS post-acute SARS-CoV-2 infection. Blood samples were collected at three time points and patients were stratified into severe and mild ARDS, based on their oxygenation saturation (SpO2/FiO2) kinetics over 7 d. Decline in transcript diversity was observed over time, particularly in patients with higher severity, indicating dysregulated transcriptional landscape. Comparing gene/transcript-level analyses highlighted a rather limited overlap. With disease progression, a transition towards an inflammatory state was evident. Strong association was found between antibody response and disease severity, characterized by decreased antibody response and activated B cell population in severe cases. Bayesian network analysis identified various factors associated with disease progression and severity, viz. humoral response, TLR signaling, inflammatory response, interferon response, and effector T cell abundance. The findings highlight dynamic gene/transcript expression changes during ARDS progression, impact on tissue oxygenation and elucidate disease pathogenesis.
Collapse
Affiliation(s)
- Priyanka Mehta
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Partha Chattopadhyay
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ramakant Mohite
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Ranit D'Rozario
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Purbita Bandopadhyay
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Jafar Sarif
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Yogiraj Ray
- Infectious Disease and Beleghata General Hospital, Kolkata, India
- Department of Infectious Diseases, Shambhunath Pandit Hospital, Institute of Postgraduate Medical Education and Research, Kolkata, India
| | - Dipyaman Ganguly
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
12
|
Cao B, Sun H, Fan Z, Khawar MB, Cai L, Yu S, Liang Z, Lv D, Wang N, Bi C, Sun H. Integrative analyses of bulk microarray data to discover genes, pathways, and immune infiltration characteristics associated with targeting of Ewing sarcoma. J Cancer Res Clin Oncol 2023; 149:6967-6977. [PMID: 36849756 PMCID: PMC10374716 DOI: 10.1007/s00432-023-04642-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/07/2023] [Indexed: 03/01/2023]
Abstract
PURPOSE To explore transcriptome and immunological features of patients with Ewing sarcoma (ES) using all publicly available microarray data. METHODS Data of 479 ES tissues were integrated and normalized. Gene expression, immune infiltration, and cancer-specific pathways were analyzed. Genes of interest were knocked down, followed by cell proliferation and colony formation assays. RESULTS Consistent with the previous reports of differential expressed genes (DEGs) in ES, our analysis identified CCND1, HMCN1, and NKX2-2 were among the most highly expressed, while TWNC1, MYBPC1, and CKM were among the lowest expressed genes. GO, KEGG, and GSEA enrichment analysis identified that the DEGs related to bone and muscle functioning, those that contributed to crucial cellular, and metabolism pathways such as actin binding, apoptosis, TCA cycle, and cell cycle were also significantly enriched. Immune infiltration analysis discovered that many T cell subsets including CD4T, CD8 T, and Gamma delta T cells were highly infiltrated, while monocytes and B cells were less infiltrated in tumors. A total of 138 genes were both significantly up-regulated in tumors and associated with decreased survival, while 38 significantly down-regulated genes were associated with increased survival, many of which were previously reported as oncogenes and tumor suppressors in ES and other cancers. Silencing of four newly identified top ranked up-regulated genes with decreased survivals in ES inhibited proliferation and colony formation of ES cells. CONCLUSION This study may provide a clear representative transcriptome profile of ES, providing diagnostic biomarkers, pathways, and immune infiltrative characteristics targets for ES.
Collapse
Affiliation(s)
- Binjie Cao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and, Translational Non-Coding RNA Research, Yangzhou, China
| | - Haijian Sun
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhehao Fan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and, Translational Non-Coding RNA Research, Yangzhou, China
| | - Muhammad Babar Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and, Translational Non-Coding RNA Research, Yangzhou, China
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Liangliang Cai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and, Translational Non-Coding RNA Research, Yangzhou, China
| | - Shiyi Yu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and, Translational Non-Coding RNA Research, Yangzhou, China
| | - Zhengyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and, Translational Non-Coding RNA Research, Yangzhou, China
| | - Dan Lv
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and, Translational Non-Coding RNA Research, Yangzhou, China
| | - Ning Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and, Translational Non-Coding RNA Research, Yangzhou, China
| | - Caili Bi
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and, Translational Non-Coding RNA Research, Yangzhou, China
| | - Haibo Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.
- Jiangsu Key Laboratory of Experimental and, Translational Non-Coding RNA Research, Yangzhou, China.
| |
Collapse
|
13
|
Jiang T, Li Y, He S, Huang N, Du M, Zhai Q, Pu K, Wu M, Yan C, Ma Z, Wang Q. Reprogramming astrocytic NDRG2/NF-κB/C3 signaling restores the diabetes-associated cognitive dysfunction. EBioMedicine 2023; 93:104653. [PMID: 37329577 DOI: 10.1016/j.ebiom.2023.104653] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 04/14/2023] [Accepted: 05/31/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND Dementia is a serious complication in patients with diabetes-associated cognitive dysfunction (DACD). In this study, we aim to explore the protective effect of exercise on DACD in diabetic mice, and the role of NDRG2 as a potential guarder for reversing the pathological structure of neuronal synapses. METHODS Seven weeks of standardized exercise at moderate intensity was carried out using an animal treadmill in the vehicle + Run and STZ + Run groups. Based on quantitative transcriptome and tandem mass tag (TMT) proteome sequencing, weighted gene co-expression analysis (WGCNA) and gene set enrichment analysis (GSEA) were used to investigate the activation of complement cascades to injury neuronal synaptic plasticity. Golgi staining, Western blotting, immunofluorescence staining, and electrophysiology were used to verify the reliability of sequencing data. The role of NDRG2 was assessed by overexpressing or inhibiting the NDRG2 gene in vivo. Moreover, we estimated the cognitive function in diabetic or normal patients using DSST scores. FINDINGS Exercise reversed the injury of neuronal synaptic plasticity and the downregulation of astrocytic NDRG2 in diabetic mice, which succeeded in attenuating DACD. The deficiency of NDRG2 aggravated the activation of complement C3 by accelerating the phosphorylation of NF-κB, ultimately leading to synaptic injury and cognitive dysfunction. Conversely, the overexpression of NDRG2 promoted astrocytic remodeling by inhibiting complement C3, thus attenuating synaptic injury and cognitive dysfunction. Meanwhile, C3aR blockade rescued dendritic spines loss and cognitive deficits in diabetic mice. Moreover, the average DSST score of diabetic patients was significantly lower than that of non-diabetic peers. Levels of complement C3 in human serum were elevated in diabetic patients compared to those in non-diabetic patients. INTERPRETATION Our findings illustrate the effectiveness and integrative mechanism of NDRG2-induced improvement of cognition from a multi-omics perspective. Additionally, they confirm that the expression of NDRG2 is closely related to cognitive function in diabetic mice and the activation of complement cascades accelerated impairment of neuronal synaptic plasticity. NDRG2 acts as a regulator of astrocytic-neuronal interaction via NF-κB/C3/C3aR signaling to restore synaptic function in diabetic mice. FUNDING This study was supported by the National Natural Science Foundation of China (No. 81974540, 81801899, 81971290), the Key Research and Development Program of Shaanxi (Program No. 2022ZDLSF02-09) and Fundamental Research Funds for the Central Universities (Grant No. xzy022019020).
Collapse
Affiliation(s)
- Tao Jiang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China; Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Yansong Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Shuxuan He
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Ning Huang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China; Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Mengyu Du
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Qian Zhai
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Kairui Pu
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Meiyan Wu
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Chaoying Yan
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Zhi Ma
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.
| |
Collapse
|
14
|
Wang C, Wang X, Zheng H, Yao J, Xiang Y, Liu D. The ndrg2 Gene Regulates Hair Cell Morphogenesis and Auditory Function during Zebrafish Development. Int J Mol Sci 2023; 24:10002. [PMID: 37373150 PMCID: PMC10297845 DOI: 10.3390/ijms241210002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Damages of sensory hair cells (HCs) are mainly responsible for sensorineural hearing loss, however, its pathological mechanism is not yet fully understood due to the fact that many potential deafness genes remain unidentified. N-myc downstream-regulated gene 2 (ndrg2) is commonly regarded as a tumor suppressor and a cell stress-responsive gene extensively involved in cell proliferation, differentiation, apoptosis and invasion, while its roles in zebrafish HC morphogenesis and hearing remains unclear. Results of this study suggested that ndrg2 was highly expressed in the HCs of the otic vesicle and neuromasts via in situ hybridization and single-cell RNA sequencing. Ndrg2 loss-of-function larvae showed decreased crista HCs, shortened cilia, and reduced neuromasts and functional HCs, which could be rescued by the microinjection of ndrg2 mRNA. Moreover, ndrg2 deficiency induced attenuated startle response behaviors to sound vibration stimuli. Mechanistically, there were no detectable HC apoptosis and supporting cell changes in the ndrg2 mutants, and HCs were capable of recovering by blocking the Notch signaling pathway, suggesting that ndrg2 was implicated in HC differentiation mediated by Notch. Overall, our study demonstrates that ndrg2 plays crucial roles in HC development and auditory sensory function utilizing the zebrafish model, which provides new insights into the identification of potential deafness genes and regulation mechanism of HC development.
Collapse
Affiliation(s)
- Cheng Wang
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; (C.W.); (J.Y.); (Y.X.)
| | - Xin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong 226001, China;
| | - Hao Zheng
- School of Medicine, Nantong University, Nantong 226001, China;
| | - Jia Yao
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; (C.W.); (J.Y.); (Y.X.)
| | - Yuqing Xiang
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; (C.W.); (J.Y.); (Y.X.)
| | - Dong Liu
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; (C.W.); (J.Y.); (Y.X.)
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong 226001, China;
| |
Collapse
|
15
|
Qian Y, Feng D, Wang J, Wei W, Wei Q, Han P, Yang L. Establishment of cancer-associated fibroblasts-related subtypes and prognostic index for prostate cancer through single-cell and bulk RNA transcriptome. Sci Rep 2023; 13:9016. [PMID: 37270661 DOI: 10.1038/s41598-023-36125-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/30/2023] [Indexed: 06/05/2023] Open
Abstract
Current evidence indicate that cancer-associated fibroblasts (CAFs) play an important role in prostate cancer (PCa) development and progression. In this study, we identified CAF-related molecular subtypes and prognostic index for PCa patients undergoing radical prostatectomy through integrating single-cell and bulk RNA sequencing data. We completed analyses using software R 3.6.3 and its suitable packages. Through single-cell and bulk RNA sequencing analysis, NDRG2, TSPAN1, PTN, APOE, OR51E2, P4HB, STEAP1 and ABCC4 were used to construct molecular subtypes and CAF-related gene prognostic index (CRGPI). These genes could clearly divide the PCa patients into two subtypes in TCGA database and the BCR risk of subtype 1 was 13.27 times higher than that of subtype 2 with statistical significance. Similar results were observed in MSKCC2010 and GSE46602 cohorts. In addtion, the molucular subtypes were the independent risk factor of PCa patients. We orchestrated CRGPI based on the above genes and divided 430 PCa patients in TCGA database into high- and low- risk groups according to the median value of this score. We found that high-risk group had significant higher risk of BCR than low-risk group (HR: 5.45). For functional analysis, protein secretion was highly enriched in subtype 2 while snare interactions in vesicular transport was highly enriched in subtype 1. In terms of tumor heterogeneity and stemness, subtype 1 showd higher levels of TMB than subtype 2. In addition, subtype 1 had significant higher activated dendritic cell score than subtype 2. Based on eight CAF-related genes, we developed two prognostic subtypes and constructed a gene prognostic index, which could predict the prognosis of PCa patients very well.
Collapse
Affiliation(s)
- Youliang Qian
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, People's Republic of China
- Department of Urology, Chengdu Second People's Hospital, Chengdu, China
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, People's Republic of China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, People's Republic of China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, People's Republic of China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, People's Republic of China
| | - Ping Han
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, People's Republic of China.
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, People's Republic of China.
| |
Collapse
|