1
|
Jakovljević I, Štrukil ZS, Pehnec G, Horvat T, Sanković M, Šumanovac A, Davila S, Račić N, Gajski G. Ambient air pollution and carcinogenic activity at three different urban locations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117704. [PMID: 39788036 DOI: 10.1016/j.ecoenv.2025.117704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/19/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
Measurements of polycyclic aromatic hydrocarbons (PAHs) were simultaneously carried out at three different urban locations in Croatia (Zagreb, Slavonski Brod and Vinkovci) characterized as urban residential (UR), urban industrial (UI) and urban background (UB), respectively. This was done in order to determine seasonal and spatial variations, estimate dominant pollution sources for each area and estimate the lifetime carcinogenic health risks from atmospheric PAHs. Mass concentrations of PAHs showed seasonal variation with the highest values during the colder period and the lowest concentration during the warmer period of the year. The contribution of four- and five-ring PAHs to the total PAH concentrations was slightly lower during the warmer period of the year at all locations, while the contribution of six-ring PAHs was higher in the warmer period compared to the colder one. Spearman correlation analysis revealed a negative correlation between temperature and PM10 and temperature and PAHs during the cold season, while in the warm period correlation with temperature was negative for PAHs and positive for PM10. Different statistical methods were used to estimate possible dominant pollution sources for each tested area. The obtained results indicated petrogenic and pyrogenic sources, petroleum combustion, and vehicle emission as dominant sources at the UR and UB locations, while vehicle emission, biomass and coal burning, and pyrogenic sources were recognized as dominant sources at the UI location. Cancer risk values obtained during the analysis were at an acceptable limit level, which was between 10-6 and 10-4 (values higher than 10-4 indicate high probable health risks).
Collapse
Affiliation(s)
- Ivana Jakovljević
- Division of Environmental Hygiene, Institute for Medical Research and Occupational Health, Zagreb 10000, Croatia.
| | - Zdravka Sever Štrukil
- Division of Environmental Hygiene, Institute for Medical Research and Occupational Health, Zagreb 10000, Croatia
| | - Gordana Pehnec
- Division of Environmental Hygiene, Institute for Medical Research and Occupational Health, Zagreb 10000, Croatia
| | - Tajana Horvat
- Division of Environmental Hygiene, Institute for Medical Research and Occupational Health, Zagreb 10000, Croatia
| | - Mandica Sanković
- Department of Physical Planning, Construction and Environmental Protection, Vinkovci 32100, Croatia
| | - Antun Šumanovac
- Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek 31000, Croatia; County General Hospital Vinkovci, Vinkovci 32100, Croatia
| | - Silvije Davila
- Division of Environmental Hygiene, Institute for Medical Research and Occupational Health, Zagreb 10000, Croatia
| | - Nikolina Račić
- Division of Environmental Hygiene, Institute for Medical Research and Occupational Health, Zagreb 10000, Croatia
| | - Goran Gajski
- Division of Toxicology, Institute for Medical Research and Occupational Health, Zagreb 10000, Croatia
| |
Collapse
|
2
|
Kazensky L, Matković K, Gerić M, Žegura B, Pehnec G, Gajski G. Impact of indoor air pollution on DNA damage and chromosome stability: a systematic review. Arch Toxicol 2024; 98:2817-2841. [PMID: 38805047 DOI: 10.1007/s00204-024-03785-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Indoor air pollution is becoming a rising public health problem and is largely resulting from the burning of solid fuels and heating in households. Burning these fuels produces harmful compounds, such as particulate matter regarded as a major health risk, particularly affecting the onset and exacerbation of respiratory diseases. As exposure to polluted indoor air can cause DNA damage including DNA sd breaks as well as chromosomal damage, in this paper, we aim to provide an overview of the impact of indoor air pollution on DNA damage and genome stability by reviewing the scientific papers that have used the comet, micronucleus, and γ-H2AX assays. These methods are valuable tools in human biomonitoring and for studying the mechanisms of action of various pollutants, and are readily used for the assessment of primary DNA damage and genome instability induced by air pollutants by measuring different aspects of DNA and chromosomal damage. Based on our search, in selected studies (in vitro, animal models, and human biomonitoring), we found generally higher levels of DNA strand breaks and chromosomal damage due to indoor air pollutants compared to matched control or unexposed groups. In summary, our systematic review reveals the importance of the comet, micronucleus, and γ-H2AX assays as sensitive tools for the evaluation of DNA and genome damaging potential of different indoor air pollutants. Additionally, research in this particular direction is warranted since little is still known about the level of indoor air pollution in households or public buildings and its impact on genetic material. Future studies should focus on research investigating the possible impact of indoor air pollutants in complex mixtures on the genome and relate pollutants to possible health outcomes.
Collapse
Affiliation(s)
- Luka Kazensky
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000, Zagreb, Croatia
| | - Katarina Matković
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000, Zagreb, Croatia
| | - Marko Gerić
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000, Zagreb, Croatia
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000, Ljubljana, Slovenia
| | - Gordana Pehnec
- Division of Environmental Hygiene, Institute for Medical Research and Occupational Health, 10000, Zagreb, Croatia
| | - Goran Gajski
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000, Zagreb, Croatia.
| |
Collapse
|
3
|
Gajski G, Kašuba V, Milić M, Gerić M, Matković K, Delić L, Nikolić M, Pavičić M, Rozgaj R, Garaj-Vrhovac V, Kopjar N. Exploring cytokinesis block micronucleus assay in Croatia: A journey through the past, present, and future in biomonitoring of the general population. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 895:503749. [PMID: 38575251 DOI: 10.1016/j.mrgentox.2024.503749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
In this study, we used the cytokinesis-block micronucleus (CBMN) assay to evaluate the background frequency of cytogenetic damage in peripheral blood lymphocytes of the general population concerning different anthropometric data and lifestyle factors. The background frequency of CBMN assay parameters was analysed in 850 healthy, occupationally non-exposed male and female subjects (average age, 38±11 years) gathered from the general Croatian population from 2000 to 2023. The mean background values for micronuclei (MNi) in the whole population were 5.3±4.3 per 1000 binucleated cells, while the mean frequency of nucleoplasmic bridges (NPBs) was 0.7±1.3 and of nuclear buds (NBUDs) 3.1±3.2. The cut-off value, which corresponds to the 95th percentile of the distribution of 850 individual values, was 14 MNi, 3 NPBs, and 9 NBUDs. Results from our database also showed an association of the tested genomic instability parameters with age and sex but also with other lifestyle factors. These findings underscore the importance of considering several anthropometric and lifestyle factors when conducting biomonitoring studies. Overall, the normal and cut-off values attained here present normal values for the general population that can later serve as baseline values for further human biomonitoring studies either in Croatia or worldwide.
Collapse
Affiliation(s)
- Goran Gajski
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia.
| | - Vilena Kašuba
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia
| | - Mirta Milić
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia
| | - Marko Gerić
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia
| | - Katarina Matković
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia
| | - Luka Delić
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia
| | - Maja Nikolić
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia
| | - Martina Pavičić
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia
| | - Ružica Rozgaj
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia
| | - Vera Garaj-Vrhovac
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia
| | - Nevenka Kopjar
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Quoc TT, Bácskay I, Fehér P, Pallér Á, Papp B, Bíró K, Ujhelyi Z. Personalized Nasal Protective Devices: Importance and Perspectives. Life (Basel) 2023; 13:2116. [PMID: 38004256 PMCID: PMC10672262 DOI: 10.3390/life13112116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 11/26/2023] Open
Abstract
Nowadays, in addition to diseases caused by environmental pollution, the importance of personalized protection against various infectious agents has become of paramount importance. Besides medicine, several technical and technological studies have been carried out to develop suitable devices. One such revolutionary solution is the use of personalized nasal filters, which allow our body to defend itself more effectively against external environmental damage and pathogens. These filters are small devices that are placed in the nose and specifically filter the inhaled environmental contaminants, allergens, and microorganisms according to individual needs. These devices not only play a key role in maintaining our health but also contribute to environmental protection, reducing the inhalation of pollutants and their harmful impact on the natural environment. Another advantage of personalized filters is that they also provide an opportunity to strengthen our individual immune systems. The use of personalized filters allows medicine to provide optimized protection for everyone, focusing on individual genetic and immunological conditions. The momentum behind the development and research of personalized nasal filters has reached astonishing proportions today. Nowadays, many research groups and medical institutions are working to create new materials, nanotechnologies, and bioinformatics solutions in order to create even more effective personalized nasal filters that can also be shaped easily and safely. Considering the needs of the users is at least as important during development as the efficiency of the device. These two properties together determine the success of the product. Industry research focuses not only on improving the efficiency of devices, but also on making them more responsive to user needs, comfort, and portability. Based on all this, it can be concluded that personalized nasal filters can be a promising and innovative solution for protection against environmental pollutants and pathogens. Through a commitment to the research and development of technology, the long-term impact of such devices on our health and the environment can be significant, contributing to improving people's quality of life and creating a sustainable future. With unique solutions and continuous research, we give hope that in the future, despite the environmental challenges, we can enjoy the protection of our health with even more efficient and sophisticated devices.
Collapse
Affiliation(s)
- Thinh To Quoc
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Sqr 98, 4032 Debrecen, Hungary; (T.T.Q.); (I.B.); (P.F.); (Á.P.); (B.P.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei Sqr 98, 4032 Debrecen, Hungary;
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Sqr 98, 4032 Debrecen, Hungary; (T.T.Q.); (I.B.); (P.F.); (Á.P.); (B.P.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei Sqr 98, 4032 Debrecen, Hungary;
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei Sqr 98, 4032 Debrecen, Hungary
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Sqr 98, 4032 Debrecen, Hungary; (T.T.Q.); (I.B.); (P.F.); (Á.P.); (B.P.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei Sqr 98, 4032 Debrecen, Hungary;
| | - Ádám Pallér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Sqr 98, 4032 Debrecen, Hungary; (T.T.Q.); (I.B.); (P.F.); (Á.P.); (B.P.)
| | - Boglárka Papp
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Sqr 98, 4032 Debrecen, Hungary; (T.T.Q.); (I.B.); (P.F.); (Á.P.); (B.P.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei Sqr 98, 4032 Debrecen, Hungary;
| | - Krisztina Bíró
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei Sqr 98, 4032 Debrecen, Hungary;
- Hospital Pharmacy at the University of Debrecen, University of Debrecen, Nagyerdei Sqr 98, 4032 Debrecen, Hungary
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Sqr 98, 4032 Debrecen, Hungary; (T.T.Q.); (I.B.); (P.F.); (Á.P.); (B.P.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei Sqr 98, 4032 Debrecen, Hungary;
| |
Collapse
|
5
|
Kević Dešić S, Viljetić B, Wagner J. Assessment of the Genotoxic and Cytotoxic Effects of Turpentine in Painters. Life (Basel) 2023; 13:life13020530. [PMID: 36836885 PMCID: PMC9966049 DOI: 10.3390/life13020530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Turpentine is a fluid used mainly as a solvent for thinning oil-based paints, obtained by distilling the resin of coniferous trees. Fine art painters use turpentine on a daily basis. The aim of this study was to investigate the genotoxic effect of turpentine and to determine the lymphocyte proliferation index in the peripheral blood of individuals occupationally exposed to turpentine. For this purpose, the cytokinesis-block micronucleus assay (CBMN) was used to determine the total number of micronuclei (MNi), nucleoplasmic bridges (NPB), and nuclear buds (NBUD), as well as the cell proliferation index (CBPI) in the peripheral blood lymphocytes of the subjects. Twenty-two subjects exposed to turpentine daily through their work participated in the study and were compared to twenty subjects in the control group. The results showed a significant increase in the number of micronuclei and other genotoxicity parameters, as well as significant cytotoxicity based on CBPI values. In addition, the genotoxic and cytotoxic effects of turpentine were found to be time-dependent, i.e., the deleterious effects of turpentine on genetic material increase with prolonged exposure. These results strongly suggest that exposure to turpentine vapors may affect genome stability and that occupational safety measures should be taken when using turpentine.
Collapse
Affiliation(s)
- Sara Kević Dešić
- Department of Medical Biology and Genetics, Faculty of Medicine, Josip Juraj Strossmayer University, 31000 Osijek, Croatia
| | - Barbara Viljetić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, Josip Juraj Strossmayer University, 31000 Osijek, Croatia
- Correspondence: (B.V.); (J.W.)
| | - Jasenka Wagner
- Department of Medical Biology and Genetics, Faculty of Medicine, Josip Juraj Strossmayer University, 31000 Osijek, Croatia
- Correspondence: (B.V.); (J.W.)
| |
Collapse
|