1
|
Machicoane M, Tonellato M, Zainotto M, Onillon P, Stazi M, Corso MD, Megighian A, Rossetto O, Le Doussal JM, Pirazzini M. Excitation-contraction coupling inhibitors potentiate the actions of botulinum neurotoxin type A at the neuromuscular junction. Br J Pharmacol 2025; 182:564-580. [PMID: 39389783 DOI: 10.1111/bph.17367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND AND PURPOSE Botulinum neurotoxin type A1 (BoNT/A) is one of the most potent neurotoxins known. At the same time, it is also one of the safest therapeutic agents used for the treatment of several human disorders and in aesthetic medicine. Notwithstanding great effectiveness, strategies to accelerate the onset and prolong BoNT/A action would significantly ameliorate its pharmacological effects with beneficial outcomes for clinical use. EXPERIMENTAL APPROACH Here, we combined BoNT/A with two fast-acting inhibitors of excitation-contraction coupling inhibitors (ECCI), either the μ-conotoxin CnIIIC or dantrolene, and tested the effect of their co-injection on a model of hind-limb paralysis in rodents using behavioural, biochemical, imaging and electrophysiological assays. KEY RESULTS The BoNT/A-ECCI combinations accelerated the onset of muscle relaxation. Surprisingly, they also potentiated the peak effect and extended the duration of the three BoNT/A commercial preparations OnabotulinumtoxinA, AbobotulinumtoxinA and IncobotulinumtoxinA. ECCI co-injection increased the number of BoNT/A molecules entering motoneuron terminals, which induced a faster and greater cleavage of SNAP-25 during the onset and peak phases, and prolonged the attenuation of nerve-muscle neurotransmission during the recovery phase. We estimate that ECCI co-injection yields a threefold potentiation in BoNT/A pharmacological activity. CONCLUSIONS AND IMPLICATIONS Overall, our results show that the pharmacological activity of BoNT/A can be combined and synergized with other bioactive molecules and uncover a novel strategy to enhance the neuromuscular effects of BoNT/A without altering the neurotoxin moiety or intrinsic activity, thus maintaining its exceptional safety profile.
Collapse
Affiliation(s)
| | - Marika Tonellato
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marica Zainotto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Marco Stazi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Mattia Dal Corso
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Aram Megighian
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Institute of Neuroscience, Italian Research Council, University of Padova, Padova, Italy
- Interdepartmental Research Center of Myology CIR-Myo, University of Padova, Padova, Italy
| | | | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Interdepartmental Research Center of Myology CIR-Myo, University of Padova, Padova, Italy
| |
Collapse
|
2
|
Koc D, Ibis K, Besarat P, Banoglu E, Kiris E. Tirbanibulin (KX2-391) analog KX2-361 inhibits botulinum neurotoxin serotype A mediated SNAP-25 cleavage in pre- and post-intoxication models in cells. Drug Dev Res 2024; 85:e22248. [PMID: 39166850 DOI: 10.1002/ddr.22248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/11/2024] [Accepted: 08/04/2024] [Indexed: 08/23/2024]
Abstract
Botulinum neurotoxins (BoNT) inhibit neuroexocytosis, leading to the potentially lethal disease botulism. BoNT serotype A is responsible for most human botulism cases, and there are no approved therapeutics to treat already intoxicated patients. A growing body of research has demonstrated that BoNT/A can escape into the central nervous system, and therefore, identification of BoNT/A inhibitors that can penetrate BBB and neutralize the toxin within intoxicated neurons would be important. We previously identified an FDA-approved, orally bioavailable compound, KX2-391 (Tirbanibulin) that inhibits BoNT/A in motor neuron assays. Recently, a structural analog of KX2-391, KX2-361, has been shown to exhibit good oral bioavailability and cross BBB with high efficiency in mouse experiments. Therefore, in this work, we evaluated the inhibitory effects of KX2-361 against BoNT/A. Toward this goal, we first evaluated the compound for its effects on cell viability in PC12 cells, via MTT assay, and in mouse embryonic stem cell (mESC)-derived motor neurons, with imaging-based assays. Following, we tested KX2-361 in mESC-derived motor neurons intoxicated with BoNT/A holotoxin, and the compound exhibited activity against the toxin in both pre- and post-intoxication conditions. Excitingly, KX2-361 also inhibited BoNT/A enzymatic component (light chain; LC) in PC12 cells transfected with BoNT/A LC. Furthermore, our molecular docking analyses suggested that KX2-361 can directly bind to BoNT/A LC. Medicinal chemistry approaches to develop structural analogs of KX2-361 to increase its efficacy against BoNT/A may provide a critical lead compound with BBB penetration capacity for drug development efforts against BoNT/A intoxication.
Collapse
Affiliation(s)
- Dilara Koc
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| | - Kubra Ibis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Peri Besarat
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| | - Erden Banoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Erkan Kiris
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| |
Collapse
|
3
|
Zeng L, Liu Y, Wang Q, Wan H, Meng X, Tu P, Chen H, Luo A, Hu P, Ding X. Botulinum toxin A attenuates osteoarthritis development via inhibiting chondrocyte ferroptosis through SLC7Al1/GPX4 axis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167215. [PMID: 38714267 DOI: 10.1016/j.bbadis.2024.167215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/07/2024] [Accepted: 04/30/2024] [Indexed: 05/09/2024]
Abstract
Osteoarthritis (OA) is a prevalent joint degenerative disease, resulting in a significant societal burden. However, there is currently a lack of effective treatment option available. Previous studies have suggested that Botulinum toxin A (BONT/A), a macromolecular protein extracted from Clostridium Botulinum, may improve the pain and joint function in OA patients, but the mechanism remains elusive. This study was to investigate the impact and potential mechanism of BONT/A on OA in vivo and in vitro experiment. LPS increased the levels of ROS, Fe2+and Fe3+, as well as decreased GSH levels, the ratio of GSH / GSSH and mitochondrial membrane potential. It also enhanced the degeneration of extracellular matrix (ECM) and altered the ferroptosis-related protein expression in chondrocytes. BONT/A rescued LPS-induced decrease in collagen type II (Collagen II) expression and increase in matrix metalloproteinase 13 (MMP13), mitigated LPS-induced cytotoxicity in chondrocytes, abolished the accumulation of ROS and iron, upregulated GSH and the ratio of GSH/ GSSH, improved mitochondrial function, and promoted SLC7A11/GPX4 anti-ferroptosis system activation. Additionally, intra-articular injection of BONT/A inhibited the degradation of cartilage in OA model rats. This chondroprotective effect of BONT/A was reversed by erastin (a classical ferroptosis agonist) and enhanced by liproxstatin-1 (a classic ferroptosis inhibitor). Our research confirms that BONT/A alleviates the OA development by inhibiting the ferroptosis of chondrocytes, which revealed to be a potential therapeutic mechanism for BONT/A treating the OA.
Collapse
Affiliation(s)
- Lian Zeng
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yanping Liu
- Department of Rehabilitation Medicine, Clinical Medical Center for Rehabilitation Treatment of Dystonia Disease, Hubei Provincial Clinical Research Center for Parkinson's Disease, Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 44100, China
| | - Qingsong Wang
- Department of Rehabilitation Medicine, Clinical Medical Center for Rehabilitation Treatment of Dystonia Disease, Hubei Provincial Clinical Research Center for Parkinson's Disease, Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 44100, China
| | - Hongmei Wan
- Department of Rehabilitation Medicine, Clinical Medical Center for Rehabilitation Treatment of Dystonia Disease, Hubei Provincial Clinical Research Center for Parkinson's Disease, Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 44100, China
| | - Xiran Meng
- Department of Rehabilitation Medicine, Clinical Medical Center for Rehabilitation Treatment of Dystonia Disease, Hubei Provincial Clinical Research Center for Parkinson's Disease, Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 44100, China
| | - Panwen Tu
- Department of Rehabilitation Medicine, Clinical Medical Center for Rehabilitation Treatment of Dystonia Disease, Hubei Provincial Clinical Research Center for Parkinson's Disease, Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 44100, China
| | - Huaxian Chen
- Department of Rehabilitation Medicine, Clinical Medical Center for Rehabilitation Treatment of Dystonia Disease, Hubei Provincial Clinical Research Center for Parkinson's Disease, Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 44100, China
| | - Ailin Luo
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - PengChao Hu
- Department of Rehabilitation Medicine, Clinical Medical Center for Rehabilitation Treatment of Dystonia Disease, Hubei Provincial Clinical Research Center for Parkinson's Disease, Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 44100, China.
| | - Xudong Ding
- Department of Rehabilitation Medicine, Clinical Medical Center for Rehabilitation Treatment of Dystonia Disease, Hubei Provincial Clinical Research Center for Parkinson's Disease, Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 44100, China.
| |
Collapse
|
4
|
Martin V, Carre D, Bilbault H, Oster S, Limana L, Sebal F, Favre-Guilmard C, Kalinichev M, Leveque C, Boulifard V, George C, Lezmi S. Intramuscular Botulinum Neurotoxin Serotypes E and A Elicit Distinct Effects on SNAP25 Protein Fragments, Muscular Histology, Spread and Neuronal Transport: An Integrated Histology-Based Study in the Rat. Toxins (Basel) 2024; 16:225. [PMID: 38787077 PMCID: PMC11125604 DOI: 10.3390/toxins16050225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Botulinum neurotoxins E (BoNT/E) and A (BoNT/A) act by cleaving Synaptosome-Associated Protein 25 (SNAP25) at two different C-terminal sites, but they display very distinct durations of action, BoNT/E being short acting and BoNT/A long acting. We investigated the duration of action, spread and neuronal transport of BoNT/E (6.5 ng/kg) and BoNT/A (125 pg/kg) after single intramuscular administrations of high equivalent efficacious doses, in rats, over a 30- or 75-day periods, respectively. To achieve this, we used (i) digit abduction score assay, (ii) immunohistochemistry for SNAP25 (N-ter part; SNAP25N-ter and C-ter part; SNAP25C-ter) and its cleavage sites (cleaved SNAP25; c-SNAP25E and c-SNAP25A) and (iii) muscular changes in histopathology evaluation. Combined in vivo observation and immunohistochemistry analysis revealed that, compared to BoNT/A, BoNT/E induces minimal muscular changes, possesses a lower duration of action, a reduced ability to spread and a decreased capacity to be transported to the lumbar spinal cord. Interestingly, SNAP25C-ter completely disappeared for both toxins during the peak of efficacy, suggesting that the persistence of toxin effects is driven by the persistence of proteases in tissues. These data unveil some new molecular mechanisms of action of the short-acting BoNT/E and long-acting BoNT/A, and reinforce their overall safety profiles.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Christian Leveque
- Aix-Marseille University, INSERM, DyNaMo U1325, 13009 Marseille, France
| | | | | | | |
Collapse
|
5
|
Nemanić D, Mustapić M, Matak I, Bach-Rojecky L. Botulinum toxin type a antinociceptive activity in trigeminal regions involves central transcytosis. Eur J Pharmacol 2024; 963:176279. [PMID: 38123005 DOI: 10.1016/j.ejphar.2023.176279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/15/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE Botulinum toxin type A (BoNT-A) provides lasting pain relief in patients with craniofacial pain conditions but the mechanisms of its antinociceptive activity remain unclear. Preclinical research revealed toxin axonal transport to the central afferent terminals, but it is unknown if its central effects involve transsynaptic traffic to the higher-order synapses. To answer this, we examined the contribution of central BoNT-A transcytosis to its action in experimental orofacial pain. MATERIAL AND METHODS Male Wistar rats, 3-4 months old, were injected with BoNT-A (7 U/kg) unilaterally into the vibrissal pad. To investigate the possible contribution of toxin's transcytosis, BoNT-A-neutralizing antiserum (5 IU) was applied intracisternally. Antinocicepive BoNT-A action was assessed by duration of nocifensive behaviors and c-Fos activation in the trigeminal nucleus caudalis (TNC) following bilateral or unilateral formalin (2.5%) application into the vibrissal pad. Additionally, cleaved synaptosomal-associated protein of 25 kDa (cl-SNAP-25) immunoreactivity was analyzed in the bilateral TNC. RESULTS Unilaterally injected BoNT-A reduced the nocifensive behaviors and bilateral c-Fos activation induced by formalin, which was accompanied by the toxin's enzymatic activity on both sides of the TNC. BoNT-A antinociceptive or enzymatic activities were prevented by the specific neutralizing antitoxin. BoNT-A contralateral action occurred independently from ipsilateral side nociception or contralateral trigeminal nerve-mediated axonal traffic. CONCLUSION Herein, we demonstrate that antinociceptive action of pericranially administered BoNT-A involves transsynaptic transport to second order synapses and contralateral trigeminal nociceptive nuclei. These results reveal more complex central toxin activity, necessary to explain its clinical effectiveness in the trigeminal region-related pain states.
Collapse
Affiliation(s)
- Dalia Nemanić
- Department of Pharmacology, University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10 000, Zagreb, Croatia
| | - Matej Mustapić
- Department of Pharmacology, University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10 000, Zagreb, Croatia
| | - Ivica Matak
- Department of Pharmacology, University of Zagreb School of Medicine, Šalata 11, 10 000, Zagreb, Croatia
| | - Lidija Bach-Rojecky
- Department of Pharmacology, University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10 000, Zagreb, Croatia.
| |
Collapse
|
6
|
Šoštarić P, Matić M, Nemanić D, Lučev Vasić Ž, Cifrek M, Pirazzini M, Matak I. Beyond neuromuscular activity: botulinum toxin type A exerts direct central action on spinal control of movement. Eur J Pharmacol 2024; 962:176242. [PMID: 38048980 DOI: 10.1016/j.ejphar.2023.176242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Overt muscle activity and impaired spinal locomotor control hampering coordinated movement is a hallmark of spasticity and movement disorders like dystonia. While botulinum toxin A (BoNT-A) standard therapy alleviates mentioned symptoms presumably due to its peripheral neuromuscular actions alone, the aim of present study was to examine for the first time the toxin's trans-synaptic activity within central circuits that govern the skilled movement. The rat hindlimb motor pools were targeted by BoNT-A intrasciatic bilateral injection (2 U per nerve), while its trans-synaptic action on premotor inputs was blocked by intrathecal BoNT-A-neutralising antitoxin (5 i.u.). Effects of BoNT-A on coordinated and high intensity motor tasks (rotarod, beamwalk swimming), and localised muscle weakness (digit abduction, gait ability) were followed until their substantial recovery by day 56 post BoNT-A. Later, (day 62-77) the BoNT-A effects were examined in unilateral calf muscle spasm evoked by tetanus toxin (TeNT, 1.5 ng). In comparison to peripheral effect alone, combined peripheral and central trans-synaptic BoNT-A action induced a more prominent and longer impairment of different motor tasks, as well as the localised muscle weakness. After near-complete recovery of motor functions, the BoNT-A maintained the ability to reduce the experimental calf spasm evoked by tetanus toxin (TeNT 1.5 ng, day 62) without altering the monosynaptic reflex excitability. These results indicate that, in addition to muscle terminals, BoNT-A-mediated control of hyperactive muscle activity in movement disorders and spasticity may involve the spinal premotor inputs and central circuits participating in the skilled locomotor performance.
Collapse
Affiliation(s)
- Petra Šoštarić
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology and Croatian Institute of Brain Research, University of Zagreb School of Medicine, Šalata 11, 10000, Zagreb, Croatia
| | - Magdalena Matić
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology and Croatian Institute of Brain Research, University of Zagreb School of Medicine, Šalata 11, 10000, Zagreb, Croatia; Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dalia Nemanić
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Domagojeva 2, 10 000, Zagreb, Croatia
| | - Željka Lučev Vasić
- University of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb, Croatia
| | - Mario Cifrek
- University of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb, Croatia
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B 35131, Padova, Italy; Interdepartmental Research Center of Myology CIR-Myo, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Ivica Matak
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology and Croatian Institute of Brain Research, University of Zagreb School of Medicine, Šalata 11, 10000, Zagreb, Croatia.
| |
Collapse
|
7
|
Kaji R. A look at the future-new BoNTs and delivery systems in development: What it could mean in the clinic. Toxicon 2023; 234:107264. [PMID: 37657515 DOI: 10.1016/j.toxicon.2023.107264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
Despite the expanding clinical utility of botulinum neurotoxins, there remain problems to be solved for attaining the best outcome. The efficacy and safety need to be reconsidered for commercially available preparations all derived from subtype A1 or B1. Emerging new toxins include A2 or A6 subtypes or engineered toxins with less spread, more potency, longer durations of action, less antigenicity and better safety profile than currently used preparations. Non-toxic BoNTs with a few amino acid replacements of the light chain (LC) may have a role as a drug-delivery system if the toxicity is abolished entirely. At present, efficacy of these BoNTs in animal botulism was demonstrated.
Collapse
Affiliation(s)
- Ryuji Kaji
- Tokushima University, Department of Clinical Neuroscience, 2-50-1 Kuramoto-cho, Tokushima, 770-8503, Japan.
| |
Collapse
|