1
|
Sahay S, Devine EA, Vargas CFA, McCullumsmith RE, O’Donovan SM. Adenosine Metabolism Pathway Alterations in Frontal Cortical Neurons in Schizophrenia. Cells 2024; 13:1657. [PMID: 39404420 PMCID: PMC11475131 DOI: 10.3390/cells13191657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
Schizophrenia is a neuropsychiatric illness characterized by altered neurotransmission, in which adenosine, a modulator of glutamate and dopamine, plays a critical role that is relatively unexplored in the human brain. In the present study, postmortem human brain tissue from the anterior cingulate cortex (ACC) of individuals with schizophrenia (n = 20) and sex- and age-matched control subjects without psychiatric illness (n = 20) was obtained from the Bronx-Mount Sinai NIH Brain and Tissue Repository. Enriched populations of ACC pyramidal neurons were isolated using laser microdissection (LMD). The mRNA expression levels of six key adenosine pathway components-adenosine kinase (ADK), equilibrative nucleoside transporters 1 and 2 (ENT1 and ENT2), ectonucleoside triphosphate diphosphohydrolases 1 and 3 (ENTPD1 and ENTPD3), and ecto-5'-nucleotidase (NT5E)-were quantified using real-time PCR (qPCR) in neurons from these individuals. No significant mRNA expression differences were observed between the schizophrenia and control groups (p > 0.05). However, a significant sex difference was found in ADK mRNA expression, with higher levels in male compared with female subjects (Mann-Whitney U = 86; p < 0.05), a finding significantly driven by disease (t(17) = 3.289; p < 0.05). Correlation analyses also demonstrated significant associations (n = 12) between the expression of several adenosine pathway components (p < 0.05). In our dementia severity analysis, ENTPD1 mRNA expression was significantly higher in males in the "mild" clinical dementia rating (CDR) bin compared with males in the "none" CDR bin (F(2, 13) = 5.212; p < 0.05). Lastly, antipsychotic analysis revealed no significant impact on the expression of adenosine pathway components between medicated and non-medicated schizophrenia subjects (p > 0.05). The observed sex-specific variations and inter-component correlations highlight the value of investigating sex differences in disease and contribute to the molecular basis of schizophrenia's pathology.
Collapse
Affiliation(s)
- Smita Sahay
- Department of Neurosciences & Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (S.M.O.)
| | - Emily A. Devine
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Christina F.-A. Vargas
- Department of Neurosciences & Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (S.M.O.)
| | - Robert E. McCullumsmith
- Department of Neurosciences & Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (S.M.O.)
- Neuroscience Institute, ProMedica, Toledo, OH 43606, USA
| | - Sinead M. O’Donovan
- Department of Neurosciences & Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (S.M.O.)
- Department of Biological Sciences, University of Limerick, Castletroy, Limerick V94 T9PX, Ireland
| |
Collapse
|
2
|
Şenol B, Ekinci RN, Arat O, Uzdoğan EA, Göka E. Serum adenosine deaminase levels in antipsychotic-naïve first-episode psychosis patients are comparable to healthy controls. Asian J Psychiatr 2024; 102:104262. [PMID: 39378757 DOI: 10.1016/j.ajp.2024.104262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Affiliation(s)
- Bedirhan Şenol
- University of Health Sciences, Ankara City Hospital, Department of Psychiatry, Ankara, Turkey.
| | - Rabia Nazik Ekinci
- University of Health Sciences, Ankara City Hospital, Department of Psychiatry, Ankara, Turkey
| | - Oğuzhan Arat
- University of Health Sciences, Ankara City Hospital, Department of Psychiatry, Ankara, Turkey
| | - Esma Andaç Uzdoğan
- University of Health Sciences, Ankara City Hospital, Department of Biochemistry, Ankara, Turkey
| | - Erol Göka
- University of Health Sciences, Ankara City Hospital, Department of Psychiatry, Ankara, Turkey
| |
Collapse
|
3
|
Zhou X, Liu Q, Liu S, Wang L, Sun Z, Sun C, Cui X. Genetic prediction of the causal relationship between schizophrenia and tumors: a Mendelian randomized study. Front Oncol 2024; 14:1321445. [PMID: 38434685 PMCID: PMC10905381 DOI: 10.3389/fonc.2024.1321445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/26/2024] [Indexed: 03/05/2024] Open
Abstract
Background Patients with schizophrenia are at a higher risk of developing cancer. However, the causal relationship between schizophrenia and different tumor types remains unclear. Methods Using a two-sample, two-way Mendelian randomization method, we used publicly available genome-wide association analysis (GWAS) aggregate data to study the causal relationship between schizophrenia and different cancer risk factors. These tumors included lung adenocarcinoma, lung squamous cell carcinoma, small-cell lung cancer, gastric cancer, alcohol-related hepatocellular cancer, tumors involving the lungs, breast, thyroid gland, pancreas, prostate, ovaries and cervix, endometrium, colon and colorectum, and bladder. We used the inverse variance weighting (IVW) method to determine the causal relationship between schizophrenia and different tumor risk factors. In addition, we conducted a sensitivity test to evaluate the effectiveness of the causality. Results After adjusting for heterogeneity, evidence of a causal relationship between schizophrenia and lung cancer risk was observed (odds ratio [OR]=1.001, 95% confidence interval [CI], 1.000-1.001; P=0.0155). In the sensitivity analysis, the causal effect of schizophrenia on the risk of lung cancer was consistent in both direction and degree. However, no evidence of causality or reverse causality between schizophrenia and other tumors was found. Conclusion This study elucidated a causal relationship between the genetic predictors of schizophrenia and the risk of lung cancer, thereby providing a basis for the prevention, pathogenesis, and treatment of schizophrenia in patients with lung cancer.
Collapse
Affiliation(s)
- Xintong Zhou
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qi Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shihan Liu
- Department of Otorhinolaryngology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liquan Wang
- Department of Thyroid and Breast Surgery, Weifang People’s Hospital, Weifang, China
| | - Zhongli Sun
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Xiangning Cui
- Department of Cardiovascular, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Lee J, Xue X, Au E, McIntyre WB, Asgariroozbehani R, Panganiban K, Tseng GC, Papoulias M, Smith E, Monteiro J, Shah D, Maksyutynska K, Cavalier S, Radoncic E, Prasad F, Agarwal SM, Mccullumsmith R, Freyberg Z, Logan RW, Hahn MK. Glucose dysregulation in antipsychotic-naive first-episode psychosis: in silico exploration of gene expression signatures. Transl Psychiatry 2024; 14:19. [PMID: 38199991 PMCID: PMC10781725 DOI: 10.1038/s41398-023-02716-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Antipsychotic (AP)-naive first-episode psychosis (FEP) patients display early dysglycemia, including insulin resistance and prediabetes. Metabolic dysregulation may therefore be intrinsic to psychosis spectrum disorders (PSDs), independent of the metabolic effects of APs. However, the potential biological pathways that overlap between PSDs and dysglycemic states remain to be identified. Using meta-analytic approaches of transcriptomic datasets, we investigated whether AP-naive FEP patients share overlapping gene expression signatures with non-psychiatrically ill early dysglycemia individuals. We meta-analyzed peripheral transcriptomic datasets of AP-naive FEP patients and non-psychiatrically ill early dysglycemia subjects to identify common gene expression signatures. Common signatures underwent pathway enrichment analysis and were then used to identify potential new pharmacological compounds via Integrative Library of Integrated Network-Based Cellular Signatures (iLINCS). Our search results yielded 5 AP-naive FEP studies and 4 early dysglycemia studies which met inclusion criteria. We discovered that AP-naive FEP and non-psychiatrically ill subjects exhibiting early dysglycemia shared 221 common signatures, which were enriched for pathways related to endoplasmic reticulum stress and abnormal brain energetics. Nine FDA-approved drugs were identified as potential drug treatments, of which the antidiabetic metformin, the first-line treatment for type 2 diabetes, has evidence to attenuate metabolic dysfunction in PSDs. Taken together, our findings support shared gene expression changes and biological pathways associating PSDs with dysglycemic disorders. These data suggest that the pathobiology of PSDs overlaps and potentially contributes to dysglycemia. Finally, we find that metformin may be a potential treatment for early metabolic dysfunction intrinsic to PSDs.
Collapse
Grants
- R01 DK124219 NIDDK NIH HHS
- R01 HL150432 NHLBI NIH HHS
- R01 MH107487 NIMH NIH HHS
- R01 MH121102 NIMH NIH HHS
- Holds the Meighen Family Chair in Psychosis Prevention, the Cardy Schizophrenia Research Chair, a Danish Diabetes Academy Professorship, a Steno Diabetes Center Fellowship, and a U of T Academic Scholar Award, and is funded by operating grants from the Canadian Institutes of Health Research (CIHR), the Banting and Best Diabetes Center, the Miners Lamp U of T award, CIHR and Canadian Psychiatric Association Glenda MacQueen Memorial Award, and the PSI Foundation.
- Hilda and William Courtney Clayton Paediatric Research Fund and Dr. LG Rao/Industrial Partners Graduate Student Award from the University of Toronto, and Meighen Family Chair in Psychosis Prevention
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- UofT | Banting and Best Diabetes Centre, University of Toronto (BBDC)
- Canadian Institutes of Health Research (CIHR) Canada Graduate Scholarship-Master’s program
- Cleghorn Award
- University of Toronto (UofT)
- Centre for Addiction and Mental Health (Centre de Toxicomanie et de Santé Mentale)
- U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- U.S. Department of Defense (United States Department of Defense)
- Commonwealth of Pennsylvania Formula Fund, The Pittsburgh Foundation
Collapse
Affiliation(s)
- Jiwon Lee
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Xiangning Xue
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emily Au
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - William B McIntyre
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Roshanak Asgariroozbehani
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Kristoffer Panganiban
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - George C Tseng
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Emily Smith
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | - Divia Shah
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kateryna Maksyutynska
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Samantha Cavalier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emril Radoncic
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Femin Prasad
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Sri Mahavir Agarwal
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Robert Mccullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
- ProMedica, Toledo, OH, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan W Logan
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA
| | - Margaret K Hahn
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Sluyter R. Purinergic Signalling in Physiology and Pathophysiology. Int J Mol Sci 2023; 24:ijms24119196. [PMID: 37298149 DOI: 10.3390/ijms24119196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Since its inception by the late Geoffrey Burnstock in the early 1970s [...].
Collapse
Affiliation(s)
- Ronald Sluyter
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|