1
|
Zervou MI, Tarlatzis BC, Goulielmos GN. Endometriosis as a risk factor for age-related macular degeneration: A nationwide population-based study and genetic aspects. Maturitas 2025; 197:108272. [PMID: 40267604 DOI: 10.1016/j.maturitas.2025.108272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Affiliation(s)
- Maria I Zervou
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 710 03 Heraklion, Greece
| | - Basil C Tarlatzis
- Unit for Human Reproduction, 1st Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, 564 03 Thessaloniki, Greece
| | - George N Goulielmos
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 710 03 Heraklion, Greece; Department of Internal Medicine, University Hospital of Heraklion, 715 00 Heraklion, Greece.
| |
Collapse
|
2
|
Marchesi N, Capierri M, Pascale A, Barbieri A. Different Therapeutic Approaches for Dry and Wet AMD. Int J Mol Sci 2024; 25:13053. [PMID: 39684764 DOI: 10.3390/ijms252313053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Age-related macular degeneration (AMD) is the most common cause of irreversible loss of central vision in elderly subjects, affecting men and women equally. It is a degenerative pathology that causes progressive damage to the macula, the central and most vital part of the retina. There are two forms of AMD depending on how the macula is damaged, dry AMD and wet or neovascular AMD. Dry AMD is the most common form; waste materials accumulate under the retina as old cells die, not being replaced. Wet AMD is less common, but can lead to vision loss much more quickly. Wet AMD is characterized by new abnormal blood vessels developing under the macula, where they do not normally grow. This frequently occurs in patients who already have dry AMD, as new blood vessels are developed to try to solve the problem. It is not known what causes AMD to develop; however, certain risk factors (i.e., age, smoking, genetic factors) can increase the risk of developing AMD. There are currently no treatments for dry AMD. There is evidence that not smoking, exercising regularly, eating nutritious food, and taking certain supplements can reduce the risk of acquiring AMD or slow its development. The main treatment for wet AMD is inhibitors of VEGF (vascular endothelial growth factor), a protein that stimulates the growth of new blood vessels. VEGF inhibitors can stop the growth of new blood vessels, preventing further damage to the macula and vision loss. In most patients, VEGF inhibitors can improve vision if macular degeneration is diagnosed early and treated accordingly. However, VEGF inhibitors cannot repair damage that has already occurred. Current AMD research is trying to find treatments for dry AMD and other options for wet AMD. This review provides a summary of the current evidence regarding the different treatments aimed at both forms of AMD with particular and greater attention to the dry form.
Collapse
Affiliation(s)
- Nicoletta Marchesi
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| | - Martina Capierri
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| | - Annalisa Barbieri
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
3
|
Schloesser L, Klose SM, Mauschitz MM, Abdullah Z, Finger RP. The role of immune modulators in age-related macular degeneration. Surv Ophthalmol 2024; 69:851-869. [PMID: 39097172 DOI: 10.1016/j.survophthal.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
We provide an overview of the expanding literature on the role of cytokines and immune mediators in pathophysiology of age-related macular degeneration (AMD). Although many immunological mediators have been linked to AMD pathophysiology, the broader mechanistic picture remains unclear with substantial variations in the levels of evidence supporting these mediators. Therefore, we reviewed the literature considering the varying levels of supporting evidence. A Medical Subject Headings (MeSH) term-based literature research was conducted in September, 2023, consisting of the MeSH terms "cytokine" and "Age-related macular degeneration" connected by the operator "AND". After screening the publications by title, abstract, and full text, a total of 146 publications were included. The proinflammatory cytokines IL-1β (especially in basic research studies), IL-6, IL-8, IL-18, TNF-α, and MCP-1 are the most extensively characterised cytokines/chemokines, highlighting the role of local inflammasome activation and altered macrophage function in the AMD pathophysiology. Among the antiinflammatory mediators IL-4, IL-10, and TGF-β were found to be the most extensively characterised, with IL-4 driving and IL-10 and TGF-β suppressing disease progression. Despite the extensive literature on this topic, a profound understanding of AMD pathophysiology has not yet been achieved. Therefore, further studies are needed to identify potential therapeutic targets, followed by clinical studies.
Collapse
Affiliation(s)
- Lukas Schloesser
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Sara M Klose
- Institute of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany; Asia-Pacific Centre for Animal Health, Faculty of Science, University of Melbourne, Melbourne, Australia
| | | | - Zeinab Abdullah
- Institute of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany
| | - Robert P Finger
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
4
|
Almalki WH, Almujri SS. The impact of NF-κB on inflammatory and angiogenic processes in age-related macular degeneration. Exp Eye Res 2024; 248:110111. [PMID: 39326776 DOI: 10.1016/j.exer.2024.110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Age-related macular degeneration (AMD) is a prominent cause of vision loss, characterized by two different types, dry (atrophic) and wet (neovascular). Dry AMD is distinguished by the progressive deterioration of retinal cells, which ultimately causes a decline in vision. In contrast, wet AMD is defined by the abnormal development of blood vessels underneath the retina, leading to a sudden and severe vision impairment. The course of AMD is primarily driven by chronic inflammation and pathological angiogenesis, in which the NF-κB signaling pathway plays a crucial role. The activation of NF-κB results in the generation of pro-inflammatory cytokines, chemokines, and angiogenic factors like VEGF, which contribute to inflammation and the formation of new blood vessels in AMD. This review analyzes the intricate relationship between NF-κB signaling, inflammation, and angiogenesis in AMD and assesses the possibility of using NF-κB as a target for therapy. The evaluation involves a comprehensive examination of preclinical and clinical evidence that substantiates the effectiveness of NF-κB inhibitors in treating AMD by diminishing inflammation and pathological angiogenesis.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Aseer, Saudi Arabia
| |
Collapse
|
5
|
de Oliveira Figueiredo EC, Bucolo C, Eandi CM. Therapeutic innovations for geographic atrophy: A promising horizon. Curr Opin Pharmacol 2024; 78:102484. [PMID: 39243634 DOI: 10.1016/j.coph.2024.102484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/24/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024]
Abstract
This mini review spotlights the most promising treatments for geographic atrophy, the advanced form of age-related macular degeneration, often resulting in severe and irreversible vision loss. The pathophysiology is complex, and various therapeutic strategies, including anticomplement therapies, gene therapies, cell-based interventions, and artificial intelligence-driven diagnostics are discussed. Anticomplement therapies (antifactors C3 and C5) showed promise in reducing the inflammatory response and the progression of the atrophy. Gene therapies, targeting specific genetic mutations, are under development to correct underlying defects and potentially reverse disease progression. Cell-based therapies are gaining momentum, with early studies indicating encouraging results in the replacement of damaged retinal pigment epithelium cells.
Collapse
Affiliation(s)
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Chiara M Eandi
- Hôpital Ophtalmique Jules-Gonin, Fondation Asile des Aveugles, Lausanne, Switzerland; Department of Surgical Science, University of Torino, Torino, Italy.
| |
Collapse
|
6
|
Matías-Pérez D, Varapizuela-Sánchez CF, Pérez-Campos EL, González-González S, Sánchez-Medina MA, García-Montalvo IA. Dietary sources of antioxidants and oxidative stress in age-related macular degeneration. Front Pharmacol 2024; 15:1442548. [PMID: 39380913 PMCID: PMC11458392 DOI: 10.3389/fphar.2024.1442548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024] Open
Affiliation(s)
- Diana Matías-Pérez
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/Instituto Tecnológico de Oaxaca, Oaxaca, Mexico
| | | | - Eduardo Lorenzo Pérez-Campos
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/Instituto Tecnológico de Oaxaca, Oaxaca, Mexico
| | | | - Marco Antonio Sánchez-Medina
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/Instituto Tecnológico de Oaxaca, Oaxaca, Mexico
| | - Iván Antonio García-Montalvo
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/Instituto Tecnológico de Oaxaca, Oaxaca, Mexico
| |
Collapse
|
7
|
Cebatoriene D, Vilkeviciute A, Gedvilaite-Vaicechauskiene G, Duseikaite M, Bruzaite A, Kriauciuniene L, Zaliuniene D, Liutkeviciene R. The Impact of ARMS2 (rs10490924), VEGFA (rs3024997), TNFRSF1B (rs1061622), TNFRSF1A (rs4149576), and IL1B1 (rs1143623) Polymorphisms and Serum Levels on Age-Related Macular Degeneration Development and Therapeutic Responses. Int J Mol Sci 2024; 25:9750. [PMID: 39273697 PMCID: PMC11396313 DOI: 10.3390/ijms25179750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Age-related macular degeneration (AMD) is a major global health problem as it is the leading cause of irreversible loss of central vision in the aging population. Anti-vascular endothelial growth factor (anti-VEGF) therapies are effective but do not respond optimally in all patients. This study investigates the genetic factors associated with susceptibility to AMD and response to treatment, focusing on key polymorphisms in the ARMS2 (rs10490924), IL1B1 (rs1143623), TNFRSF1B (rs1061622), TNFRSF1A (rs4149576), VEGFA (rs3024997), ARMS2, IL1B1, TNFRSF1B, TNFRSF1A, and VEGFA serum levels in AMD development and treatment efficacy. This study examined the associations of specific genetic polymorphisms and serum protein levels with exudative and early AMD and the response to anti-VEGF treatment. The AA genotype of VEGFA (rs3024997) was significantly associated with a 20-fold reduction in the odds of exudative AMD compared to the GG + GA genotypes. Conversely, the TT genotype of ARMS2 (rs10490924) was linked to a 4.2-fold increase in the odds of exudative AMD compared to GG + GT genotypes. In females, each T allele of ARMS2 increased the odds by 2.3-fold, while in males, the TT genotype was associated with a 5-fold increase. Lower serum IL1B levels were observed in the exudative AMD group compared to the controls. Early AMD patients had higher serum TNFRSF1B levels than controls, particularly those with the GG genotype of TNFRSF1B rs1061622. Exudative AMD patients with the CC genotype of TNFRSF1A rs4149576 had lower serum TNFRSF1A levels compared to the controls. Visual acuity (VA) analysis showed that non-responders had better baseline VA than responders but experienced decreased VA after treatment, whereas responders showed improvement. Central retinal thickness (CRT) reduced significantly in responders after treatment and was lower in responders compared to non-responders after treatment. The T allele of TNFRSF1B rs1061622 was associated with a better response to anti-VEGF treatment under both dominant and additive genetic models. These findings highlight significant genetic and biochemical markers associated with AMD and treatment response. This study found that the VEGFA rs3024997 AA genotype reduces the odds of exudative AMD, while the ARMS2 rs10490924 TT genotype increases it. Lower serum IL1B levels and variations in TNFRSF1B and TNFRSF1A levels were linked to AMD. The TNFRSF1B rs1061622 T allele was associated with better anti-VEGF treatment response. These markers could potentially guide risk assessment and personalized treatment for AMD.
Collapse
Affiliation(s)
- Dzastina Cebatoriene
- Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, LT-44307 Kaunas, Lithuania
| | - Alvita Vilkeviciute
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu St. 2, LT-50161 Kaunas, Lithuania
| | | | - Monika Duseikaite
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu St. 2, LT-50161 Kaunas, Lithuania
| | - Akvile Bruzaite
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu St. 2, LT-50161 Kaunas, Lithuania
| | - Loresa Kriauciuniene
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu St. 2, LT-50161 Kaunas, Lithuania
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu St. 2, LT-50161 Kaunas, Lithuania
| | - Dalia Zaliuniene
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu St. 2, LT-50161 Kaunas, Lithuania
| | - Rasa Liutkeviciene
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu St. 2, LT-50161 Kaunas, Lithuania
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu St. 2, LT-50161 Kaunas, Lithuania
| |
Collapse
|
8
|
Khaparde A, Mathias GP, Poornachandra B, Thirumalesh MB, Shetty R, Ghosh A. Gene therapy for retinal diseases: From genetics to treatment. Indian J Ophthalmol 2024; 72:1091-1101. [PMID: 39078952 PMCID: PMC11451791 DOI: 10.4103/ijo.ijo_2902_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/31/2024] [Accepted: 04/19/2024] [Indexed: 10/06/2024] Open
Abstract
The gene therapy approach for retinal disorders has been considered largely over the last decade owing to the favorable outcomes of the US Food and Drug Administration-approved commercial gene therapy, Luxturna. Technological advances in recent years, such as next-generation sequencing, research in molecular pathogenesis of retinal disorders, and precise correlations with their clinical phenotypes, have contributed to the progress of gene therapies for various diseases worldwide, and more recently in India as well. Thus, considerable research is being conducted for the right choice of vectors, transgene engineering, and accessible and cost-effective large-scale vector production. Many retinal disease-specific clinical trials are presently being conducted, thereby necessitating the collation of such information as a ready reference for the scientific and clinical community. In this article, we present an overview of existing gene therapy research, which is derived from an extensive search across PubMed, Google Scholar, and clinicaltrials.gov sources. This contributes to prime the understanding of basic aspects of this cutting-edge technology and information regarding current clinical trials across many different conditions. This information will provide a comprehensive evaluation of therapies in existing use/research for personalized treatment approaches in retinal disorders.
Collapse
Affiliation(s)
- Ashish Khaparde
- GROW Research Laboratory, Narayana Nethralaya Foundation, Manipal, Karnataka, India
| | - Grace P Mathias
- GROW Research Laboratory, Narayana Nethralaya Foundation, Manipal, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - B Poornachandra
- Department of Vitreo Retina Services, Narayana Nethralaya, Manipal, Karnataka, India
| | - M B Thirumalesh
- Department of Vitreo Retina Services, Narayana Nethralaya, Manipal, Karnataka, India
| | - Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bengaluru, Karnataka, India
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Manipal, Karnataka, India
| |
Collapse
|
9
|
Kulbay M, Wu KY, Nirwal GK, Bélanger P, Tran SD. The Role of Reactive Oxygen Species in Age-Related Macular Degeneration: A Comprehensive Review of Antioxidant Therapies. Biomedicines 2024; 12:1579. [PMID: 39062152 PMCID: PMC11274723 DOI: 10.3390/biomedicines12071579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
This review article delves into the intricate roles of reactive oxygen species (ROS) in the pathogenesis of age-related macular degeneration (AMD). It presents a detailed analysis of the oxidative stress mechanisms that contribute to the development and progression of these diseases. The review systematically explores the dual nature of ROS in ocular physiology and pathology, underscoring their essential roles in cellular signaling and detrimental effects when in excess. In the context of AMD, the focus is on the oxidative impairment in the retinal pigment epithelium and Bruch's membrane, culminating in the deterioration of macular health. Central to this review is the evaluation of various antioxidant strategies in the prevention and management of AMD. It encompasses a wide spectrum of antioxidants, ranging from dietary nutrients like vitamins C and E, lutein, and zeaxanthin to pharmacological agents with antioxidative properties. The review also addresses novel therapeutic approaches, including gene therapy and nanotechnology-based delivery systems, aiming to enhance antioxidant defense mechanisms in ocular tissues. The article concludes by synthesizing current research findings, clinical trial data, and meta-analyses to provide evidence-based recommendations. It underscores the need for further research to optimize antioxidant therapies, considering individual patient factors and disease stages. This comprehensive review thus serves as a valuable resource for clinicians, researchers, and healthcare professionals in ophthalmology, offering insights into the potential of antioxidants in mitigating the burden of AMD.
Collapse
Affiliation(s)
- Merve Kulbay
- Department of Ophthalmology & Visual Sciences, McGill University, Montréal, QC H4A 3S5, Canada;
| | - Kevin Y. Wu
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (K.Y.W.)
| | - Gurleen K. Nirwal
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Paul Bélanger
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
10
|
Bhumika, Bora NS, Bora PS. Genetic Insights into Age-Related Macular Degeneration. Biomedicines 2024; 12:1479. [PMID: 39062052 PMCID: PMC11274963 DOI: 10.3390/biomedicines12071479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
One of the major causes of vision impairment among elderly people in developed nations is age-related macular degeneration (AMD). The distinctive features of AMD are the accumulation of extracellular deposits called drusen and the gradual deterioration of photoreceptors and nearby tissues in the macula. AMD is a complex and multifaceted disease influenced by several factors such as aging, environmental risk factors, and a person's genetic susceptibility to the condition. The interaction among these factors leads to the initiation and advancement of AMD, where genetic predisposition plays a crucial role. With the advent of high-throughput genotyping technologies, many novel genetic loci associated with AMD have been identified, enhancing our knowledge of its genetic architecture. The common genetic variants linked to AMD are found on chromosome 1q32 (in the complement factor H gene) and 10q26 (age-related maculopathy susceptibility 2 and high-temperature requirement A serine peptidase 1 genes) loci, along with several other risk variants. This review summarizes the common genetic variants of complement pathways, lipid metabolism, and extracellular matrix proteins associated with AMD risk, highlighting the intricate pathways contributing to AMD pathogenesis. Knowledge of the genetic underpinnings of AMD will allow for the future development of personalized diagnostics and targeted therapeutic interventions, paving the way for more effective management of AMD and improved outcomes for affected individuals.
Collapse
Affiliation(s)
- Bhumika
- Department of Zoology, Sunderwati Mahila College, Tilka Manjhi Bhagalpur University, Bihar 812007, India;
| | - Nalini S. Bora
- Pat & Willard Walker Eye Research Center, Department of Ophthalmology, Jones Eye Institute, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR 72205, USA;
| | - Puran S. Bora
- Pat & Willard Walker Eye Research Center, Department of Ophthalmology, Jones Eye Institute, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR 72205, USA;
| |
Collapse
|
11
|
Kim MJ, Martin CA, Kim J, Jablonski MM. Computational methods in glaucoma research: Current status and future outlook. Mol Aspects Med 2023; 94:101222. [PMID: 37925783 PMCID: PMC10842846 DOI: 10.1016/j.mam.2023.101222] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/06/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Advancements in computational techniques have transformed glaucoma research, providing a deeper understanding of genetics, disease mechanisms, and potential therapeutic targets. Systems genetics integrates genomic and clinical data, aiding in identifying drug targets, comprehending disease mechanisms, and personalizing treatment strategies for glaucoma. Molecular dynamics simulations offer valuable molecular-level insights into glaucoma-related biomolecule behavior and drug interactions, guiding experimental studies and drug discovery efforts. Artificial intelligence (AI) technologies hold promise in revolutionizing glaucoma research, enhancing disease diagnosis, target identification, and drug candidate selection. The generalized protocols for systems genetics, MD simulations, and AI model development are included as a guide for glaucoma researchers. These computational methods, however, are not separate and work harmoniously together to discover novel ways to combat glaucoma. Ongoing research and progresses in genomics technologies, MD simulations, and AI methodologies project computational methods to become an integral part of glaucoma research in the future.
Collapse
Affiliation(s)
- Minjae J Kim
- Department of Ophthalmology, The Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| | - Cole A Martin
- Department of Ophthalmology, The Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| | - Jinhwa Kim
- Graduate School of Artificial Intelligence, Graduate School of Metaverse, Department of Management Information Systems, Sogang University, 1 Shinsoo-Dong, Mapo-Gu, Seoul, South Korea.
| | - Monica M Jablonski
- Department of Ophthalmology, The Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
12
|
Weh E, Goswami M, Chaudhury S, Fernando R, Miller N, Hager H, Sheskey S, Sharma V, Wubben TJ, Besirli CG. Metabolic Alterations Caused by Simultaneous Loss of HK2 and PKM2 Leads to Photoreceptor Dysfunction and Degeneration. Cells 2023; 12:2043. [PMID: 37626853 PMCID: PMC10453858 DOI: 10.3390/cells12162043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
HK2 and PKM2 are two main regulators of aerobic glycolysis. Photoreceptors (PRs) use aerobic glycolysis to produce the biomass necessary for the daily renewal of their outer segments. Previous work has shown that HK2 and PKM2 are important for the normal function and long-term survival of PRs but are dispensable for PR maturation, and their individual loss has opposing effects on PR survival during acute nutrient deprivation. We generated double conditional (dcKO) mice lacking HK2 and PKM2 expression in rod PRs. Western blotting, immunofluorescence, optical coherence tomography, and electroretinography were used to characterize the phenotype of dcKO animals. Targeted and stable isotope tracing metabolomics, qRT-PCR, and retinal oxygen consumption were performed. We show that dcKO animals displayed early shortening of PR inner/outer segments, followed by loss of PRs with aging, much more rapidly than either knockout alone without functional loss as measured by ERG. Significant alterations to central glucose metabolism were observed without any apparent changes to mitochondrial function, prior to PR degeneration. Finally, PR survival following experimental retinal detachment was unchanged in dcKO animals as compared to wild-type animals. These data suggest that HK2 and PKM2 have differing roles in promoting PR neuroprotection and identifying them has important implications for developing therapeutic options for combating PR loss during retinal disease.
Collapse
Affiliation(s)
- Eric Weh
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (M.G.); (S.C.); (R.F.); (N.M.); (H.H.); (S.S.); (V.S.); (T.J.W.)
| | | | | | | | | | | | | | | | | | - Cagri G. Besirli
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (M.G.); (S.C.); (R.F.); (N.M.); (H.H.); (S.S.); (V.S.); (T.J.W.)
| |
Collapse
|
13
|
Raimondi R, D'Esposito F, Sorrentino T, Tsoutsanis P, De Rosa FP, Stradiotto E, Barone G, Rizzato A, Allegrini D, Costagliola C, Romano MR. How to Set Up Genetic Counselling for Inherited Macular Dystrophies: Focus on Genetic Characterization. Int J Mol Sci 2023; 24:ijms24119722. [PMID: 37298674 DOI: 10.3390/ijms24119722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/11/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Inherited macular dystrophies refer to a group of degenerative conditions that predominantly affect the macula in the spectrum of inherited retinal dystrophies. Recent trends indicate a clear need for genetic assessment services in tertiary referral hospitals. However, establishing such a service can be a complex task due to the diverse skills required and multiple professionals involved. This review aims to provide comprehensive guidelines to enhance the genetic characterization of patients and improve counselling efficacy by combining updated literature with our own experiences. Through this review, we hope to contribute to the establishment of state-of-the-art genetic counselling services for inherited macular dystrophies.
Collapse
Affiliation(s)
- Raffaele Raimondi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
| | - Fabiana D'Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, 153-173 Marylebone Rd, London NW1 5QH, UK
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy
| | - Tania Sorrentino
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
| | - Panos Tsoutsanis
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
| | - Francesco Paolo De Rosa
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
| | - Elisa Stradiotto
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
| | - Gianmaria Barone
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
| | | | | | - Ciro Costagliola
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy
| | - Mario R Romano
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Eye Center, Humanitas Gavazzeni-Castelli, 24125 Bergamo, Italy
| |
Collapse
|
14
|
Nepita I, Raimondi R, Piazza S, Diaspro A, Vidal-Aroca F, Surdo S, Romano MR. Optical-Quality Assessment of a Miniaturized Intraocular Telescope. J Clin Med 2023; 12:jcm12103375. [PMID: 37240481 DOI: 10.3390/jcm12103375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/20/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Age-related macular degeneration (AMD) causes severe vision impairments, including blindness. An option to improve vision in AMD patients is through intraocular lenses and optics. Among others, implantable miniaturized telescopes, which direct light to healthy lateral regions of the retina, can be highly effective in improving vision in AMD patients. Yet, the quality of the restored vision might be sensitive to the optical transmission and aberrations of the telescope. To shed light on these points, we studied the in vitro optical performance of an implantable miniaturized telescope, namely, the SING IMT™ (Samsara Vision Ltd., Far Hills, NJ, USA) designed to improve vision in patients affected by late-stage AMD. Specifically, we measured the optical transmission in the spectral range 350-750 nm of the implantable telescope with a fiber-optic spectrometer. Wavefront aberrations were studied by measuring the wavefront of a laser beam after passing through the telescope and expanding the measured wavefront into a Zernike polynomial basis. Wavefront concavity indicated that the SING IMT™ behaves as a diverging lens with a focal length of -111 mm. The device exhibited even optical transmission in the whole visible spectrum and effective curvature suitable for retinal images magnification with negligible geometrical aberrations. Optical spectrometry and in vitro wavefront analysis provide evidence supporting the feasibility of miniaturized telescopes as high-quality optical elements and a favorable option for AMD visual impairment treatments.
Collapse
Affiliation(s)
- Irene Nepita
- Nanoscopy, Istituto Italiano di Tecnologia, Via E. Melen 83, 16152 Genova, Italy
- Genoa Instruments s.r.l., Via E. Melen 83, 16152 Genoa, Italy
| | - Raffaele Raimondi
- Department of Biomedical Sciences, Humanitas University, 20090 Milano, Italy
| | - Simonluca Piazza
- Nanoscopy, Istituto Italiano di Tecnologia, Via E. Melen 83, 16152 Genova, Italy
- Genoa Instruments s.r.l., Via E. Melen 83, 16152 Genoa, Italy
| | - Alberto Diaspro
- Nanoscopy, Istituto Italiano di Tecnologia, Via E. Melen 83, 16152 Genova, Italy
- DIFILAB, Department of Physics, University of Genoa, 16146 Genoa, Italy
| | | | - Salvatore Surdo
- Genoa Instruments s.r.l., Via E. Melen 83, 16152 Genoa, Italy
- Dipartimento di Ingegneria dell'Informazione, Università di Pisa, 56122 Pisa, Italy
| | - Mario R Romano
- Department of Biomedical Sciences, Humanitas University, 20090 Milano, Italy
- Eye Center, Humanitas Gavazzeni-Castelli, 24128 Bergamo, Italy
| |
Collapse
|