1
|
Koehn LM, Nguyen KV, Tucker R, Lim YP, Chen X, Stonestreet BS. Inter-alpha Inhibitor Proteins Modulate Microvascular Endothelial Components and Cytokines After Exposure to Hypoxia-Ischemia in Neonatal Rats. Mol Neurobiol 2025; 62:5057-5072. [PMID: 39505805 DOI: 10.1007/s12035-024-04594-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024]
Abstract
Inter-alpha inhibitor proteins (IAIPs) are neuroprotective and attenuate lipopolysaccharide (LPS)-mediated blood-brain barrier (BBB) disruption in neonatal rodents. We investigated some mechanism(s) fundamental to neuroprotection by IAIPs including changes in cerebral endothelial components and inflammation. Postnatal day-7 rats exposed to sham surgery and placebo or carotid ligation plus 8% FiO2 (90 min) were given IAIPs (30 or 60 mg/kg) or placebo and were killed 6, 12, 24, or 36 h after hypoxia-ischemia (HI). Proteins regulating BBB permeability to leukocytes (vascular cell adhesion molecule 1, VCAM-1), lipid-soluble (P-glycoprotein, PGP), and lipid-insoluble molecules (zonula occludens-1, ZO-1) were measured by immunoblot, and cytokines were measured in serum and cortex. HI resulted in reductions in ZO-1 and increases in VCAM-1, PGP, interferon-γ (IFN-γ), interleukin-12 (IL-12), vascular endothelial growth factor (VEGF), IL-α, and macrophage colony-stimulating factor (M-CSF) in cortex and increases in IL-4, IL-5, IL-10, and granulocyte colony-stimulating factor (G-CSF) in serum. IAIPs attenuated the reductions in ZO-1 and delayed increases in VCAM-1 and PGP in cortex and attenuated increases in cytokines in serum (IL-4, IL-5, IL-10, IFN-γ, G-CSF) and cortex (IL-1α, IL-12, IFN-γ, VEGF, M-CSF) after HI. We conclude that vascular endothelial proteins and cytokines exhibit sequential changes after HI and IAIPs modulate some of these HI-related changes in neonatal rats.
Collapse
Affiliation(s)
- Liam M Koehn
- Department of Pediatrics, Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
- Present Address: Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Kevin V Nguyen
- Department of Pediatrics, Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
| | - Richard Tucker
- Department of Pediatrics, Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
| | - Yow-Pin Lim
- ProThera Biologics Inc, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, The Alpert Medical School of Brown University, Providence, RI, USA
| | - Xiaodi Chen
- Department of Pediatrics, Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
| | - Barbara S Stonestreet
- Department of Pediatrics, Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA.
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
2
|
Wu Z, Bæk O, Muk T, Yang L, Shen RL, Gangadharan B, Bilic I, Nielsen DS, Sangild PT, Nguyen DN. Feeding cessation and antibiotics improve clinical symptoms and alleviate gut and systemic inflammation in preterm pigs sensitive to necrotizing enterocolitis. Biomed Pharmacother 2024; 179:117391. [PMID: 39241567 DOI: 10.1016/j.biopha.2024.117391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
Necrotizing enterocolitis (NEC) is a microbiota- and feeding-related gut inflammatory disease in preterm infants. The standard of care (SOC) treatment for suspected NEC is antibiotic treatment and reduced enteral feeding, but how SOC treatment mitigates NEC remains unclear. We explored whether SOC treatment alone or combined with an anti-inflammatory protein (inter-alpha inhibitor protein, IAIP) supplementation improves outcomes in a preterm piglet model of formula-induced NEC. Seventy-one cesarean-delivered preterm piglets were initially fed formula, developing NEC symptoms by day 3, and then randomized into CON (continued feeding) or SOC groups (feeding cessation and antibiotics), each with or without human IAIP (2×2 factorial design). By day 5, IAIP treatment did not significantly influence outcomes, whereas SOC treatment effectively reduced NEC lesions, diarrhea, and bloody stools. Notably, SOC treatment improved gut morphology and function, dampened gut inflammatory responses, altered the colonic microbiota composition, and modulated systemic immune responses. Plasma proteomic analysis revealed the effects of SOC treatment on organ development and systemic inflammatory responses. Collectively, these findings suggest that SOC treatment significantly prevents NEC progression in preterm piglets via effects on gut structure, function, and microbiota, as well as systemic immune and inflammatory responses. Timely feeding cessation and antibiotics are critical factors in preventing NEC progression in preterm infants, while the benefits of additional human IAIP treatment remain to be established.
Collapse
Affiliation(s)
- Ziyuan Wu
- Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Ole Bæk
- Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Tik Muk
- Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Lin Yang
- Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - René Liang Shen
- Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Bagirath Gangadharan
- Plasma-derived therapies, Baxalta Innovations GmbH, Austria, part of Takeda Pharmaceuticals Ltd
| | - Ivan Bilic
- Plasma-derived therapies, Baxalta Innovations GmbH, Austria, part of Takeda Pharmaceuticals Ltd
| | | | - Per Torp Sangild
- Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark; Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen Ø DK-2100, Denmark; Department of Paediatrics, Odense University Hospital, Odense C DK-5000, Denmark
| | - Duc Ninh Nguyen
- Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
3
|
Bitar L, Stonestreet BS, Lim YP, Qiu J, Chen X, Mir IN, Chalak LF. Association between decreased cord blood inter-alpha inhibitor levels and neonatal encephalopathy at birth. Early Hum Dev 2024; 193:106036. [PMID: 38733833 PMCID: PMC11768766 DOI: 10.1016/j.earlhumdev.2024.106036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Inter-alpha inhibitor proteins (IAIPs) are structurally related proteins found in the systemic circulation with immunomodulatory anti-inflammatory properties. Reduced levels are found in inflammatory related conditions including sepsis and necrotizing enterocolitis, and in neonatal rodents after exposure to hypoxia ischemia. In the current study, cord blood IAIP levels were measured in neonates with and without exposure to hypoxic-ischemic encephalopathy (HIE). METHODS This is a prospective cohort study including infants born ≥36 weeks over a one-year period. Term pregnancies were divided into two groups: a "reference control" (uncomplicated term deliveries), and "moderate to severe HIE" (qualifying for therapeutic hypothermia). IAIPs were quantified using a sensitive ELISA on the cord blood samples. RESULTS The study included 57 newborns: Reference control group (n = 13) and moderate/severe HIE group (n = 44). Measurement of IAIP cord blood concentrations in moderate to severe HIE group [278.2 (138.0, 366.0) μg/ml] revealed significantly lower IAIP concentrations compared with the control group [418.6 (384.5, 445.0) μg/ml] (p = 0.002). CONCLUSIONS These findings suggest a potential role for IAIPs as indicators of neonates at risk for HIE. IAIP levels could have diagnostic implications in the management of HIE. Future research is required to explore the relationship between HIE and IAIPs as biomarkers for disease severity. CATEGORY OF STUDY Translational.
Collapse
Affiliation(s)
- Lynn Bitar
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Barbara S Stonestreet
- The Alpert Medical School of Brown University, Department of Pediatrics, Women & Infants Hospital of Rhode Island, Providence, RI, United States of America
| | - Yow-Pin Lim
- ProThera Biologics, Inc., Providence, RI, United States of America; The Alpert Medical School of Brown University, Department of Pathology and Laboratory Medicine, Providence, RI, United States of America
| | - Joseph Qiu
- ProThera Biologics, Inc., Providence, RI, United States of America
| | - Xiaodi Chen
- The Alpert Medical School of Brown University, Department of Pediatrics, Women & Infants Hospital of Rhode Island, Providence, RI, United States of America
| | - Imran N Mir
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Lina F Chalak
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States of America.
| |
Collapse
|
4
|
Chen XF, Wu Y, Kim B, Nguyen KV, Chen A, Qiu J, Santoso AR, Disdier C, Lim YP, Stonestreet BS. Neuroprotective efficacy of hypothermia and Inter-alpha Inhibitor Proteins after hypoxic ischemic brain injury in neonatal rats. Neurotherapeutics 2024; 21:e00341. [PMID: 38453562 PMCID: PMC11070713 DOI: 10.1016/j.neurot.2024.e00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024] Open
Abstract
Therapeutic hypothermia is the standard of care for hypoxic-ischemic (HI) encephalopathy. Inter-alpha Inhibitor Proteins (IAIPs) attenuate brain injury after HI in neonatal rats. Human (h) IAIPs (60 mg/kg) or placebo (PL) were given 15 min, 24 and 48 h to postnatal (P) day-7 rats after carotid ligation and 8% oxygen for 90 min with (30 °C) and without (36 °C) exposure to hypothermia 1.5 h after HI for 3 h. Hemispheric volume atrophy (P14) and neurobehavioral tests including righting reflex (P8-P10), small open field (P13-P14), and negative geotaxis (P14) were determined. Hemispheric volume atrophy in males was reduced (P < 0.05) by 41.9% in the normothermic-IAIP and 28.1% in the hypothermic-IAIP compared with the normothermic-PL group, and in females reduced (P < 0.05) by 30.3% in the normothermic-IAIP, 45.7% in hypothermic-PL, and 55.2% in hypothermic-IAIP compared with the normothermic-PL group after HI. Hypothermia improved (P < 0.05) the neuroprotective effects of hIAIPs in females. The neuroprotective efficacy of hIAIPs was comparable to hypothermia in female rats (P = 0.183). Treatment with hIAIPs, hypothermia, and hIAIPs with hypothermia decreased (P < 0.05) the latency to enter the peripheral zone in the small open field test in males. We conclude that hIAIPs provide neuroprotection from HI brain injury that is comparable to the protection by hypothermia, hypothermia increases the effects of hIAIPs in females, and hIAIPs and hypothermia exhibit some sex-related differential effects.
Collapse
Affiliation(s)
- Xiaodi F Chen
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA; The Alpert Medical School of Brown University, USA
| | - Yuqi Wu
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA; The Alpert Medical School of Brown University, USA
| | - Boram Kim
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA; The Alpert Medical School of Brown University, USA
| | - Kevin V Nguyen
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA; The Alpert Medical School of Brown University, USA
| | - Ainuo Chen
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA; The Alpert Medical School of Brown University, USA
| | - Joseph Qiu
- ProThera Biologics, Inc., Providence, RI, USA
| | | | - Clemence Disdier
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA; The Alpert Medical School of Brown University, USA
| | - Yow-Pin Lim
- ProThera Biologics, Inc., Providence, RI, USA; The Alpert Medical School of Brown University, Department of Pathology and Laboratory Medicine, Providence, RI, USA
| | - Barbara S Stonestreet
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA; The Alpert Medical School of Brown University, USA; Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
5
|
Melrose J. Hyaluronan hydrates and compartmentalises the CNS/PNS extracellular matrix and provides niche environments conducive to the optimisation of neuronal activity. J Neurochem 2023; 166:637-653. [PMID: 37492973 DOI: 10.1111/jnc.15915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023]
Abstract
The central nervous system/peripheral nervous system (CNS/PNS) extracellular matrix is a dynamic and highly interactive space-filling, cell-supportive, matrix-stabilising, hydrating entity that creates and maintains tissue compartments to facilitate regional ionic micro-environments and micro-gradients that promote optimal neural cellular activity. The CNS/PNS does not contain large supportive collagenous and elastic fibrillar networks but is dominated by a high glycosaminoglycan content, predominantly hyaluronan (HA) and collagen is restricted to the brain microvasculature, blood-brain barrier, neuromuscular junction and meninges dura, arachnoid and pia mater. Chondroitin sulphate-rich proteoglycans (lecticans) interactive with HA have stabilising roles in perineuronal nets and contribute to neural plasticity, memory and cognitive processes. Hyaluronan also interacts with sialoproteoglycan associated with cones and rods (SPACRCAN) to stabilise the interphotoreceptor matrix and has protective properties that ensure photoreceptor viability and function is maintained. HA also regulates myelination/re-myelination in neural networks. HA fragmentation has been observed in white matter injury, multiple sclerosis, and traumatic brain injury. HA fragments (2 × 105 Da) regulate oligodendrocyte precursor cell maturation, myelination/remyelination, and interact with TLR4 to initiate signalling cascades that mediate myelin basic protein transcription. HA and its fragments have regulatory roles over myelination which ensure high axonal neurotransduction rates are maintained in neural networks. Glioma is a particularly invasive brain tumour with extremely high mortality rates. HA, CD44 and RHAMM (receptor for HA-mediated motility) HA receptors are highly expressed in this tumour. Conventional anti-glioma drug treatments have been largely ineffective and surgical removal is normally not an option. CD44 and RHAMM glioma HA receptors can potentially be used to target gliomas with PEP-1, a cell-penetrating HA-binding peptide. PEP-1 can be conjugated to a therapeutic drug; such drug conjugates have successfully treated dense non-operative tumours in other tissues, therefore similar applications warrant exploration as potential anti-glioma treatments.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Sydney Medical School, Northern, The University of Sydney, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| |
Collapse
|
6
|
Girolamo F, Lim YP, Virgintino D, Stonestreet BS, Chen XF. Inter-Alpha Inhibitor Proteins Modify the Microvasculature after Exposure to Hypoxia-Ischemia and Hypoxia in Neonatal Rats. Int J Mol Sci 2023; 24:6743. [PMID: 37047713 PMCID: PMC10094872 DOI: 10.3390/ijms24076743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Microvasculature develops during early brain development. Hypoxia-ischemia (HI) and hypoxia (H) predispose to brain injury in neonates. Inter-alpha inhibitor proteins (IAIPs) attenuate injury to the neonatal brain after exposure to HI. However, the effects of IAIPs on the brain microvasculature after exposure to HI have not been examined in neonates. Postnatal day-7 rats were exposed to sham treatment or right carotid artery ligation and 8% oxygen for 90 min. HI comprises hypoxia (H) and ischemia to the right hemisphere (HI-right) and hypoxia to the whole body, including the left hemisphere (H-left). Human IAIPs (hIAIPs, 30 mg/kg) or placebo were injected immediately, 24 and 48 h after HI/H. The brains were analyzed 72 h after HI/H to determine the effects of hIAIPs on the microvasculature by laminin immunohistochemistry and calculation of (1) the percentage area stained by laminin, (2) cumulative microvessel length, and (3) density of tunneling nanotubes (TNTs), which are sensitive indicators of the earliest phases of neo-vascularization/collateralization. hIAIPs mainly affected the percent of the laminin-stained area after HI/H, cumulative vessel length after H but not HI, and TNT density in females but not males. hIAIPs modify the effects of HI/H on the microvasculature after brain injury in neonatal rats and exhibit sex-related differential effects. Our findings suggest that treatment with hIAIPs after exposure to H and HI in neonatal rats affects the laminin content of the vessel basal lamina and angiogenic responses in a sex-related fashion.
Collapse
Affiliation(s)
- Francesco Girolamo
- Department of Translational Biomedicines and Neuroscience (DiBraiN), University of Bari School of Medicine, 70124 Bari, Italy
| | - Yow-Pin Lim
- ProThera Biologics, Inc., Providence, RI 02905, USA
- Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, Providence, RI 02905, USA
| | - Daniela Virgintino
- Department of Translational Biomedicines and Neuroscience (DiBraiN), University of Bari School of Medicine, 70124 Bari, Italy
| | - Barbara S. Stonestreet
- Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, Providence, RI 02905, USA
| | - Xiaodi F. Chen
- Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, Providence, RI 02905, USA
| |
Collapse
|