1
|
Jung D, Kim NE, Kim S, Bae JH, Jung IY, Doh KW, Lee B, Kim DK, Cho YE, Baek MC. Plant-derived nanovesicles and therapeutic application. Pharmacol Ther 2025; 269:108832. [PMID: 40023319 DOI: 10.1016/j.pharmthera.2025.108832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/27/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Plant-derived nanovesicles (PDNVs) are becoming more popular as promising therapeutic tools owing to their diversity, cost-effectiveness, and biocompatibility with very low toxicity. Therefore, this review aims to discuss the methods for isolating and characterizing PDNVs and emphasize their versatile roles in direct therapeutic applications and drug delivery systems. Their ability to effectively encapsulate and deliver large nucleic acids, proteins, and small-molecule drugs was highlighted. Moreover, advanced engineering strategies, such as surface modification and fusion with other vesicles, have been developed to enhance the therapeutic effects of PDNVs. Additionally, we describe key challenges related to this field, encouraging further research to optimize PDNVs for various clinical applications for prevention and therapeutic purposes. The distinctive properties and diverse applications of PDNVs could play a crucial role in the future of personalized medicine, fostering the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Dokyung Jung
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Na-Eun Kim
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Sua Kim
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Ju-Hyun Bae
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Il-Young Jung
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Kyung-Won Doh
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Byungheon Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Do-Kyun Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea
| | - Young-Eun Cho
- Department of Food and Nutrition, Andong National University, Andong 36729, Republic of Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea.
| |
Collapse
|
2
|
Bae GY, Ko K, Yang E, Park SS, Suh HJ, Hong KB. Combined Effects of Ziziphus jujuba, Dimocarpus longan, and Lactuca sativa on Sleep-Related Behaviors through GABAergic Signaling. Foods 2023; 13:1. [PMID: 38201029 PMCID: PMC10778002 DOI: 10.3390/foods13010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
We aimed to analyze the increase in the sleep-promoting effects based on the mixed ratio of botanical extracts, Ziziphus jujuba seeds, Dimocarpus longan fruits, and Lactuca sativa leaves, using animal models. Behavioral analyses, including an analysis of the total sleep time of Drosophila melanogaster, were conducted to select the optimal mixed ratio of the three botanical extracts. The effects were verified in a caffeine-induced sleepless model, specific neurotransmitter receptor antagonists, and ICR mice. In D. melanogaster exposed to 2.0% of each extract, group behavior was significantly reduced, and the mixed extracts of Z. jujuba, D. longan, and L. sativa (4:1:1 and 1:4:1) significantly increased the total sleep time with individual fruit flies. In the caffeine-induced insomnia model, mixed extracts (4:1:1 and 1:4:1) led to the highest increase in total sleep time. An analysis of locomotor ability revealed a significant reduction in the mobility percentage in the mixed extract groups (0:0:1, 1:0:1, 1:1:1, 4:1:1, and 1:4:1). The administration of Z. jujuba extract and mixed extracts (4:1:1) significantly increased the expression of GABAA-R, whereas the administration of the mixed extracts (4:1:1) and (1:4:1) significantly increased the expression of GABAB-R1 and GABAB-R2, respectively. D. longan extract and the mixed ratio (1:4:1) reduced the subjective nighttime movement and increased the total sleep time in the presence of flumazenil. An analysis of ICR mice indicated that the administration of mixed extracts (4:1:1) significantly increased sleep duration in a dose-dependent manner. These results indicated that the mixed ratio of Z. jujuba, D. longan, and L. sativa extracts, particularly the mixed ratio of 4:1:1, may have sleep-enhancing effects in fruit flies and mice. The study also identified changes in gene expression related to GABA receptors, indicating the potential mechanism for the observed sleep-promoting effects.
Collapse
Affiliation(s)
- Gi Yeon Bae
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea; (G.Y.B.); (H.J.S.)
| | - Kayoung Ko
- Department of Food Science and Nutrition, Jeju National University, Jeju 63243, Republic of Korea; (K.K.); (E.Y.); (S.-S.P.)
| | - Eunseon Yang
- Department of Food Science and Nutrition, Jeju National University, Jeju 63243, Republic of Korea; (K.K.); (E.Y.); (S.-S.P.)
| | - Sung-Soo Park
- Department of Food Science and Nutrition, Jeju National University, Jeju 63243, Republic of Korea; (K.K.); (E.Y.); (S.-S.P.)
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea; (G.Y.B.); (H.J.S.)
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul 02841, Republic of Korea
| | - Ki-Bae Hong
- Department of Food Science and Nutrition, Jeju National University, Jeju 63243, Republic of Korea; (K.K.); (E.Y.); (S.-S.P.)
| |
Collapse
|
3
|
Kim K, Jang HJ, Baek S, Ahn SH. Rosae multiflorae fructus regulates the lipogenesis in high-fat diet-induced NAFLD mice model. Phys Act Nutr 2023; 27:55-59. [PMID: 38297477 PMCID: PMC10844720 DOI: 10.20463/pan.2023.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024] Open
Abstract
PURPOSE Exercise helps modify the lipid profile in the body, partly through its impact on sterol regulatory element binding protein-1 (SREBP-1) and peroxisome proliferator-activated receptor-γ (PPAR-γ). Individual differences in response to exercise and genetic variations may influence the response to PA. Therefore, this study explored Rosae multiflorae fructus (RMF) as a supplement candidate that improves exercise capacity and controls non-alcoholic fatty liver disease (NAFLD) by suppressing lipogenesis and controlling lipid peroxidation. METHODS RMF is a natural herbal medicine used in Dongui Bogam. RMF has antioxidant, anti-inflammatory, and anti-allergic effects. However, the effects of RMF on NAFLD have not yet been investigated. In this study, we examined the effects of RMF in a mouse model of high-fat diet-induced NAFLD. Mouse livers were isolated and analyzed using H&E staining and immunohistochemistry. RESULTS RMF downregulated lipid peroxidation markers, such as CYP2E1, in the livers of mice with high-fat diet-induced NAFLD. Additionally, the RMF significantly reduced the lipid accumulation-related protein expression of CD36, SREBP-1, and PPAR-γ. CONCLUSION RMF exerts anti-lipid peroxidation and anti-lipogenic effects in a high-fat diet-induced NAFLD mouse model.
Collapse
Affiliation(s)
- Kibong Kim
- Second Division of Clinical Medicine, School of Korean Medicine, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - Hyun Joo Jang
- Insitute for artificial intelligence and software, Soonchunhyang University, Chungcheongnam-do, Republic of Korea
| | - Suji Baek
- Research & Development Center, UMUST R&D corporation, Seoul, Republic of Korea
| | - Sang-hyun Ahn
- Department of Anatomy, College of Korean Medicine, Semyung University, Chungchengbuk-do, Republic of Korea
| |
Collapse
|