1
|
Adediji AO, Ojo JA, Olowoake AA, Alabi KO, Atiri GI. Complete Genome of Achromobacter xylosoxidans, a Nitrogen-Fixing Bacteria from the Rhizosphere of Cowpea (Vigna unguiculata [L.] Walp) Tolerant to Cucumber Mosaic Virus Infection. Curr Microbiol 2024; 81:356. [PMID: 39278894 DOI: 10.1007/s00284-024-03882-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024]
Abstract
Achromobacter xylosoxidans is one of the nitrogen-fixing bacteria associated with cowpea rhizosphere across Africa. Although its role in improving soil fertility and inducing systemic resistance in plants against pathogens has been documented, there is limited information on its complete genomic characteristics from cowpea roots. Here, we report the complete genome sequence of A. xylosoxidans strain DDA01 isolated from the topsoil of a field where cowpea plants tolerant to cucumber mosaic virus (CMV) were grown in Ibadan, Nigeria. The genome of DDA01 was sequenced via Illumina MiSeq and contained 6,930,067 nucleotides with 67.55% G + C content, 73 RNAs, 59 tRNAs, and 6421 protein-coding genes, including those associated with nitrogen fixation, phosphate solubilization, Indole3-acetic acid production, and siderophore activity. Eleven genetic clusters for secondary metabolites, including alcaligin, were identified. The potential of DDA01 as a plant growth-promoting bacteria with genetic capabilities to enhance soil fertility for resilience against CMV infection in cowpea is discussed. To our knowledge, this is the first complete genome of diazotrophic bacteria obtained from cowpea rhizosphere in sub-Saharan Africa, with potential implications for improved soil fertility, plant disease resistance, and food security.
Collapse
Affiliation(s)
- Adedapo O Adediji
- Research Office, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria.
| | - James A Ojo
- Department of Crop Production, Kwara State University, Malete, Ilorin, Nigeria
| | - Adebayo A Olowoake
- Department of Crop Production, Kwara State University, Malete, Ilorin, Nigeria
| | - Khadijat O Alabi
- Department of Crop Production, Kwara State University, Malete, Ilorin, Nigeria
| | - Gabriel I Atiri
- Department of Crop Protection and Environmental Biology, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
2
|
Zhang M, Feng S, Song J, Ruan X, Xue W. Formononetin derivatives containing benzyl piperidine: A brand new, highly efficient inhibitor targeting Xanthomonas spp. J Adv Res 2024:S2090-1232(24)00384-9. [PMID: 39233004 DOI: 10.1016/j.jare.2024.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024] Open
Abstract
INTRODUCTION Plant bacterial diseases take an incalculable toll on global food security. The indiscriminate use of chemical synthetic pesticide not only facilitates pathogen resistance of pathogenic bacteria, but also poses a major threat to human health and environmental protection. Therefore, it is of great economic value and scientific significance to develop a new antibacterial drug with environmental friendliness and unique mechanism of action. OBJECTIVES To design and synthesize formononetin derivatives based on natural products, evaluate their in vitro and in vivo antibacterial activities and elucidate the mechanisms involved. METHODS The synthesis was carried out by classical active group splicing method. The antibacterial activities were evaluated using turbidimetry and pot experiments. The antibacterial mechanism was further investigated using scanning electron microscopy (SEM), virulence factors, defense enzymes activities, proteomics and metabolomics. RESULTS 40 formononetin derivatives containing benzyl piperidine were designed and synthesized. The antibacterial results demonstrated that H32 exhibited the most potent inhibitory effect against Xanthomonas oryzae pv. Oryzae (Xoo) with the EC50 of 0.07 μg/mL, while H6 displayed the highest inhibitory activity against Xanthomonas axonopodis pv. Citri (Xac) with the EC50 of 0.24 μg/mL. Furthermore, the control efficacy of H32 against rice bacterial leaf blight (BLB) and H6 against citrus canker (CC) was validated through pot experiments. SEM, virulence factors and host enzyme activities assay indicated that H32 could not only reduce the virulence of Xoo, but also activate the activities of defense enzymes and improve the disease resistance of host plants. The proteomics and metabolomics analysis demonstrated that H32 could inhibit the synthesis of branched-chain amino acids, make Xoo cells in a starvation state, inhibit its proliferation, weaken its virulence and reduce its colonization and infection of host cells. CONCLUSION Formononetin derivatives containing benzyl piperidine could be used as potentially effective inhibitors against Xanthomonas spp.
Collapse
Affiliation(s)
- Miaohe Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, PR China; School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, PR China
| | - Shuang Feng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, PR China; School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, PR China
| | - Junrong Song
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, PR China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China; Natural Products Research Center of Guizhou Province, Guiyang 550014, PR China
| | - Xianghui Ruan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, PR China.
| | - Wei Xue
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
3
|
Humaira Z, Cho D, Peng Y, Avila F, Park YL, Kim CY, Lee J. Demequina capsici sp. nov., a novel plant growth-promoting actinomycete isolated from the rhizosphere of bell pepper (Capsicum annuum). Sci Rep 2024; 14:15830. [PMID: 38982145 PMCID: PMC11233565 DOI: 10.1038/s41598-024-66202-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024] Open
Abstract
Demequina, commonly found in coastal and marine environments, represents a genus of Actinomycetes. In this study, strains Demequina PMTSA13T and OYTSA14 were isolated from the rhizosphere of Capsicum annuum, leading to the discovery of a novel species, Demequina capsici. Bacteria play a significant role in plant growth, yet there have been no reports of the genus Demequina acting as plant growth-promoting bacteria (PGPB). Comparative genomics analysis revealed ANI similarity values of 74.05-80.63% for PMTSA13T and 74.02-80.54% for OYTSA14, in comparison to various Demequina species. The digital DNA-DNA hybridization (dDDH) values for PMTSA13T ranged from 19 to 39%, and 19.1-38.6% for OYTSA14. Genome annotation revealed the presence of genes associated with carbohydrate metabolism and transport, suggesting a potential role in nutrient cycling and availability for plants. These strains were notably rich in genes related to 'carbohydrate metabolism and transport (G)', according to their Cluster of Orthologous Groups (COG) classification. Additionally, both strains were capable of producing auxin (IAA) and exhibited enzymatic activities for cellulose degradation and catalase. Furthermore, PMTSA13T and OYTSA14 significantly induced the growth of Arabidopsis thaliana seedlings primarily attributed to their capacity to produce IAA, which plays a crucial role in stimulating plant growth and development. These findings shed light on the potential roles of Demequina strains in plant-microbe interactions and agricultural applications. The type strain is Demequina capsici PMTSA13T (= KCTC 59028T = GDMCC 1.4451T), meanwhile OYTSA14 is identified as different strains of Demequina capsici.
Collapse
Affiliation(s)
- Zalfa Humaira
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeollabuk-do, 56212, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Yuseong, Daejeon, 34113, Republic of Korea
| | - Donghyun Cho
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Yuxin Peng
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Forbes Avila
- Animal Model Research Group, Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, Jeollabuk-do, 56212, Republic of Korea
- Human and Environmental Toxicology, University of Science and Technology (UST), Yuseong, Daejeon, 34113, Republic of Korea
| | - Yu Lim Park
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Cha Young Kim
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Jiyoung Lee
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeollabuk-do, 56212, Republic of Korea.
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Yuseong, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
4
|
Shu X, Yin D, Liang J, Xiang T, Zhang C, Li H, Zheng A, Li P, Wang A. Tilletia horrida glycoside hydrolase family 128 protein, designated ThGhd_7, modulates plant immunity by blocking reactive oxygen species production. PLANT, CELL & ENVIRONMENT 2024; 47:2459-2474. [PMID: 38501941 DOI: 10.1111/pce.14893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/27/2024] [Accepted: 03/09/2024] [Indexed: 03/20/2024]
Abstract
Tilletia horrida is an important soilborne fungal pathogen that causes rice kernel smut worldwide. We found a glycoside hydrolase family 128 protein, designated ThGhd_7, caused cell death in Nicotiana benthamiana leaves. The predicted signal peptide (SP) of ThGhd_7 targets it for secretion. However, loss of the SP did not affect its ability to induce cell death. The 23-201 amino acid sequence of ThGhd_7 was sufficient to trigger cell death in N. benthamiana. ThGhd_7 expression was induced and upregulated during T. horrida infection. ThGhd_7 localised to both the cytoplasm and nucleus of plant cells, and nuclear localisation was required to induce cell death. The ability of ThGhd_7 to trigger cell death in N. benthamiana depends on RAR1 (required for Mla12 resistance), SGT1 (suppressor of G2 allele of Skp1), and BAK1/SERK3 (somatic embryogenesis receptor-like kinase 3). Heterologous overexpression of ThGhd_7 in rice reduced reactive oxygen species (ROS) production and enhanced susceptibility to T. horrida. Further research revealed that ThGhd_7 interacted with and destabilised OsSGT1, which is required for ROS production and is a positive regulator of rice resistance to T. horrida. Taken together, these findings suggest that T. horrida employs ThGhd_7 to disrupt ROS production and thereby promote infection.
Collapse
Affiliation(s)
- Xinyue Shu
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Desuo Yin
- Food Crop Research Institute, Hubei Academy of Agriculture Sciences, Wuhan, China
| | - Juan Liang
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Ting Xiang
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Chao Zhang
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Honglian Li
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Aiping Zheng
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Ping Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Aijun Wang
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
5
|
Zhao J, Yuan Z, Han X, Bao T, Yang T, Liu Z, Liu H. The Carbonic Anhydrase βCA1 Functions in PopW-Mediated Plant Defense Responses in Tomato. Int J Mol Sci 2023; 24:11021. [PMID: 37446199 DOI: 10.3390/ijms241311021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
β-Carbonic anhydrase (βCA) is very important for plant growth and development, but its function in immunity has also been examined. In this study, we found that the expression level of Solanum lycopersicum βCA1 (SlβCA1) was significantly upregulated in plants treated with Xanthomonas euvesicatoria 85-10. The protein was localized in the nucleus, cell membrane and chloroplast. Using tomato plants silenced with SlβCA1, we demonstrated that SlβCA1 plays an active role in plant disease resistance. Moreover, we found that the elicitor PopW upregulated the expression of SlβCA1, while the microbe-associated molecular pattern response induced by PopW was inhibited in TRV-SlβCA1. The interaction between PopW and SlβCA1 was confirmed. Here, we found that SlβCA1 was positively regulated during PopW-induced resistance to Xanthomonas euvesicatoria 85-10. These data indicate the importance of SlβCA1 in plant basic immunity and its recognition by the Harpin protein PopW as a new target for elicitor recognition.
Collapse
Affiliation(s)
- Jieru Zhao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhixiang Yuan
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xixi Han
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Tingting Bao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Tingmi Yang
- Guangxi Academy of Specialty Crops, Guilin 541004, China
| | - Zhuang Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongxia Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|